Nanosecond X-ray diffraction of shock-compressed superionic water ice

被引:238
|
作者
Millot, Marius [1 ]
Coppari, Federica [1 ]
Rygg, J. Ryan [1 ,2 ,3 ]
Barrios, Antonio Correa [1 ]
Hamel, Sebastien [1 ]
Swift, Damian C. [1 ]
Eggert, Jon H. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Univ Rochester, Laser Energet Lab, Rochester, NY USA
[3] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA
关键词
LIQUID; PHASE;
D O I
10.1038/s41586-019-1114-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Since Bridgman's discovery of five solid water (H2O) ice phases(1) in 1912, studies on the extraordinary polymorphism of H2O have documented more than seventeen crystalline and several amorphous ice structures(2,3), as well as rich metastability and kinetic effects(4,5). This unique behaviour is due in part to the geometrical frustration of the weak intermolecular hydrogen bonds and the sizeable quantum motion of the light hydrogen ions (protons). Particularly intriguing is the prediction that H2O becomes superionic(6-12)-with liquid-like protons diffusing through the solid lattice of oxygen- when subjected to extreme pressures exceeding 100 gigapascals and high temperatures above 2,000 kelvin. Numerical simulations suggest that the characteristic diffusion of the protons through the empty sites of the oxygen solid lattice (1) gives rise to a surprisingly high ionic conductivity above 100 Siemens per centimetre, that is, almost as high as typical metallic (electronic) conductivity, (2) greatly increases the ice melting temperature(7-13) to several thousand kelvin, and (3) favours new ice structures with a close-packed oxygen lattice(13-15). Because confining such hot and dense H2O in the laboratory is extremely challenging, experimental data are scarce. Recent optical measurements along the Hugoniot curve (locus of shock states) of water ice VII showed evidence of superionic conduction and thermodynamic signatures for melting(16), but did not confirm the microscopic structure of superionic ice. Here we use laser-driven shockwaves to simultaneously compress and heat liquid water samples to 100-400 gigapascals and 2,000-3,000 kelvin. In situ X-ray diffraction measurements show that under these conditions, water solidifies within a few nanoseconds into nanometre-sized ice grains that exhibit unambiguous evidence for the crystalline oxygen lattice of superionic water ice. The X-ray diffraction data also allow us to document the compressibility of ice at these extreme conditions and a temperature- and pressure induced phase transformation from a body-centred-cubic ice phase (probably ice X) to a novel face-centred-cubic, superionic ice phase, which we name ice XVIII2,17.
引用
收藏
页码:251 / 255
页数:5
相关论文
共 50 条
  • [41] Shock-compressed graphite to diamond transformation on nanosecond time scales
    Winey, J. M.
    Gupta, Y. M.
    PHYSICAL REVIEW B, 2013, 87 (17)
  • [42] X-ray diffraction patterns of ice
    Burton, EF
    Oliver, WF
    NATURE, 1935, 135 : 505 - 506
  • [43] CALCULATION OF X-RAY ABSORPTION STRUCTURE ABOVE K-EDGE OF LASER SHOCK-COMPRESSED ALUMINUM
    DJAOUI, A
    HALL, TA
    ALBERS, RC
    REHR, JJ
    MUSTRE, J
    LASER AND PARTICLE BEAMS, 1990, 8 (1-2) : 319 - 325
  • [44] X-RAY STUDY OF THE MECHANISM OF PHASE-TRANSITION IN SHOCK-COMPRESSED KCL SINGLE-CRYSTAL
    ZARETSKII, YB
    KANEL, GI
    MOGILEVSKII, PA
    FORTOV, VY
    DOKLADY AKADEMII NAUK SSSR, 1991, 316 (01): : 111 - 115
  • [45] Nanosecond x-ray Laue diffraction apparatus suitable for laser shock compression experiments
    Suggit, Matthew
    Kimminau, Giles
    Hawreliak, James
    Remington, Bruce
    Park, Nigel
    Wark, Justin
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (08):
  • [46] Material strength determination in the shock compressed state using x-ray diffraction measurements
    Turneaure, Stefan J.
    Gupta, Y. M.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (12)
  • [48] Measurement of Short-Range Correlations in Shock-Compressed Plastic by Short-Pulse X-Ray Scattering
    Barbrel, B.
    Koenig, M.
    Benuzzi-Mounaix, A.
    Brambrink, E.
    Brown, C. R. D.
    Gericke, D. O.
    Nagler, B.
    le Gloahec, M. Rabec
    Riley, D.
    Spindloe, C.
    Vinko, S. M.
    Vorberger, J.
    Wark, J.
    Wuensch, K.
    Gregori, G.
    PHYSICAL REVIEW LETTERS, 2009, 102 (16)
  • [49] Evidence for a shock-compressed magnetic field in the northwestern rim of Vela Jr. from X-ray polarimetry
    Prokhorov, Dmitry A.
    Yang, Yi-Jung
    Ferrazzoli, Riccardo
    Vink, Jacco
    Slane, Patrick
    Costa, Enrico
    Silvestri, Stefano
    Zhou, Ping
    Bucciantini, Niccolo
    Di Marco, Alessandro
    Weisskopf, Martin C.
    Baldini, Luca
    Doroshenko, Victor
    Ehlert, Steven R.
    Heyl, Jeremy
    Kaaret, Philip
    Kim, Dawoon E.
    Marin, Frederic
    Mizuno, Tsunefumi
    Ng, Chi-Yung
    Pesce-Rollins, Melissa
    Sgro, Carmelo
    Soffitta, Paolo
    Swartz, Douglas A.
    Tamagawa, Toru
    Xie, Fei
    Agudo, Ivan
    Antonelli, Lucio A.
    Bachetti, Matteo
    Baumgartner, Wayne H.
    Bellazzini, Ronaldo
    Bianchi, Stefano
    Bongiorno, Stephen D.
    Bonino, Raffaella
    Brez, Alessandro
    Capitanio, Fiamma
    Castellano, Simone
    Cavazzuti, Elisabetta
    Chen, Chien-Ting
    Ciprini, Stefano
    De Rosa, Alessandra
    Del Monte, Ettore
    Di Gesu, Laura
    Di Lalla, Niccolo
    Donnarumma, Immacolata
    Dovciak, Michal
    Enoto, Teruaki
    Evangelista, Yuri
    Fabiani, Sergio
    Garcia, Javier A.
    ASTRONOMY & ASTROPHYSICS, 2024, 692
  • [50] NANOSECOND X-RAY DIFFRACTION IN SHOCKED SOLID MATERIALS
    MITCHELL, AC
    JOHNSON, Q
    KEELER, RN
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1969, 14 (08): : 833 - &