Finite-dimensional filters

被引:1
|
作者
Maybank, S
机构
[1] Department of Computer Science, University of Reading, Reading, Berkshire RG6 6AY, Whiteknights
关键词
D O I
10.1098/rsta.1996.0042
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The class of optimal nonlinear finite-dimensional recursive filters found by Benes is extended to include cases in which the drift in the state propagation equation is a general linear function plus the gradient of a scalar potential. It is shown that if the state space is one dimensional, then the deterministic systems underlying the Benes filter fall into five classes, depending on the asymptotic behaviour of the state at large times. Only two of these classes can be obtained using the Kalman filter. It is shown that an arbitrary deterministic trajectory can be approximated at small times to an accuracy of O(t(5)) by a trajectory for which the Benes filter is appropriate. The Benes construction is the starting point for the development of new finite-dimensional recursive approximations to the optimal filter. One of the new filters is applied to a simple tracking problem taken from computer vision, and its performance compared with that of the extended Kalman filter.
引用
收藏
页码:1099 / 1123
页数:25
相关论文
共 50 条
  • [41] The Finite-Dimensional Freeman Thesis
    Lee Rudolph
    Integrative Psychological and Behavioral Science, 2008, 42
  • [42] On locally finite-dimensional traces
    Amini, Massoud
    Moradi, Mehdi
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (04) : 2076 - 2085
  • [43] Finite-dimensional (*)-serial algebras
    HaiLou Yao
    WeiLi Fan
    Science China Mathematics, 2010, 53 : 3049 - 3056
  • [44] Towards finite-dimensional gelation
    K. Broderix
    M. Weigt
    A. Zippelius
    The European Physical Journal B - Condensed Matter and Complex Systems, 2002, 29 : 441 - 455
  • [45] New finite-dimensional risk-sensitive filters: Small-noise limits
    Charalambous, CD
    Dey, S
    Elliott, RJ
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 2830 - 2835
  • [46] Finite-dimensional (*)-serial algebras
    YAO HaiLou & FAN WeiLi College of Applied Science
    Science China(Mathematics), 2010, 53 (12) : 3049 - 3056
  • [47] SUMS OF FINITE-DIMENSIONAL SPACES
    WENNER, BR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (06): : 986 - &
  • [48] DENTABILITY AND FINITE-DIMENSIONAL DECOMPOSITIONS
    BOURGAIN, J
    STUDIA MATHEMATICA, 1980, 67 (02) : 135 - 148
  • [49] Towards finite-dimensional gelation
    Broderix, K
    Weigt, M
    Zippelius, A
    EUROPEAN PHYSICAL JOURNAL B, 2002, 29 (03): : 441 - 455
  • [50] FINITE-DIMENSIONAL CONVOLUTION ALGEBRAS
    HEWITT, E
    ZUCKERMAN, HS
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 60 (04) : 388 - 388