Constant time distance queries in planar unweighted graphs with subquadratic preprocessing time

被引:1
|
作者
Wulff-Nilsen, Christian [1 ]
机构
[1] Univ Southern Denmark, Dept Math & Comp Sci, DK-5230 Odense M, Denmark
来源
关键词
Planar graph; Wiener index; Diameter; Shortest path distances; Distance oracle; ALGORITHMS; WIENER;
D O I
10.1016/j.comgeo.2012.01.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be an n-vertex planar, undirected, and unweighted graph. It was stated as open problems whether the Wiener index, defined as the sum of all-pairs shortest path distances, and the diameter of G can be computed in o(n(2)) time. We show that both problems can be solved in O(n(2) log log n/log n) time with O(n) space. The techniques that we apply allow us to build, within the same time bound, an oracle for exact distance queries in G. More generally, for any parameter S is an element of [(log n/log log n)(2), n(2/5)], distance queries can be answered in O (root S log S/log n) time per query with O(n(2)/root S) preprocessing time and space requirement. With respect to running time, this is better than previous algorithms when log S = o(log n). All algorithms have linear space requirement. Our results generalize to a larger class of graphs including those with a fixed excluded minor. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:831 / 838
页数:8
相关论文
共 50 条
  • [11] Non-Crossing Shortest Paths in Undirected Unweighted Planar Graphs in Linear Time
    Balzotti, Lorenzo
    Franciosa, Paolo G.
    Journal of Graph Algorithms and Applications, 2022, 26 (04) : 589 - 606
  • [12] Computing the Discrete Frechet Distance in Subquadratic Time
    Agarwal, Pankaj K.
    Ben Avraham, Rinat
    Kaplan, Haim
    Sharir, Micha
    PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA 2013), 2013, : 156 - 167
  • [13] Preprocessing an undirected planar network to enable fast approximate distance queries
    Klein, P
    PROCEEDINGS OF THE THIRTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2002, : 820 - 827
  • [14] Approximate Distance Oracles for Unweighted Graphs in Expected O(n2) Time
    Baswana, Surender
    Sen, Sandeep
    ACM TRANSACTIONS ON ALGORITHMS, 2006, 2 (04)
  • [15] COMPUTING THE DISCRETE FRECHET DISTANCE IN SUBQUADRATIC TIME
    Agarwal, Pankaj K.
    Ben Avraham, Rinat
    Kaplan, Haim
    Sharir, Micha
    SIAM JOURNAL ON COMPUTING, 2014, 43 (02) : 429 - 449
  • [16] Distance oracles for unweighted graphs: Breaking the quadratic barrier with constant additive error
    Baswana, Surender
    Gaur, Akshay
    Sen, Sandeep
    Upadhyay, Jayant
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT 1, PROCEEDINGS, 2008, 5125 : 609 - +
  • [17] Predecessor queries in constant time?
    Karpinski, M
    Nekrich, Y
    ALGORITHMS - ESA 2005, 2005, 3669 : 238 - 248
  • [18] Top-k Distance Queries on Large Time-Evolving Graphs
    D'Ascenzo, Andrea
    D'Emidio, Mattia
    IEEE ACCESS, 2023, 11 : 102228 - 102242
  • [19] Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce
    Boroujeni, Mahdi
    Ehsani, Soheil
    Ghodsi, Mohammad
    Hajiaghayi, Mohammadtaghi
    Seddighin, Saeed
    JOURNAL OF THE ACM, 2021, 68 (03)
  • [20] Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce
    Boroujeni, Mahdi
    Ehsani, Soheil
    Ghodsi, Mohammad
    HajiAghayi, MohammadTaghi
    Seddighin, Saeed
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 1170 - 1189