Human motion detection using Markov random fields

被引:6
|
作者
Cao, Xiao-Qin [1 ]
Liu, Zhi-Qiang [1 ]
机构
[1] City Univ Hong Kong, Sch Creat Media, Kowloon Tong, Hong Kong, Peoples R China
关键词
Human motion; Markov random fields; Relaxation labeling; HUMAN POSE; TRACKING; MODEL;
D O I
10.1007/s12652-010-0015-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose Markov random fields (MRFs) to automatically detect a moving human body through minimizing the joint energy of the MRF for the velocity and relative position of body parts. The relaxation labeling algorithm is employed to find the best body part labeling configuration between MRFs and observed data. We detect a walking motion viewed monocularly based on point features, where some points are from the unoccluded body parts and some belong to the background. The results show that MRFs can detect human motions robustly and accurately.
引用
收藏
页码:211 / 220
页数:10
相关论文
共 50 条
  • [11] Car detection using Markov random fields on geometric features
    Chang, Xingzhi
    Gao, Liqun
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 2108 - 2113
  • [12] Segmentation of motion textures using mixed-state Markov random fields
    Crivelli, T.
    Cernuschi-Frias, B.
    Bouthemy, P.
    Yao, J. F.
    MATHEMATICS OF DATA IMAGE PATTERN RECOGNITION, COMPRESSION, AND ENCRYPTION WITH APPLICATIONS IX, 2006, 6315
  • [13] Detection of spatiotemporally coherent rainfall anomalies using Markov Random Fields
    Mitra, Adway
    Seshadri, Ashwin K.
    COMPUTERS & GEOSCIENCES, 2019, 122 : 45 - 53
  • [14] ColluEagle: collusive review spammer detection using Markov random fields
    Wang, Zhuo
    Hu, Runlong
    Chen, Qian
    Gao, Pei
    Xu, Xiaowei
    DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 34 (06) : 1621 - 1641
  • [15] ColluEagle: collusive review spammer detection using Markov random fields
    Zhuo Wang
    Runlong Hu
    Qian Chen
    Pei Gao
    Xiaowei Xu
    Data Mining and Knowledge Discovery, 2020, 34 : 1621 - 1641
  • [16] Direct estimate of motion parameters by means of Markov random fields
    Bartolini, F
    Caldelli, R
    Romagnoli, V
    2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2001, : 949 - 952
  • [17] Markov random fields and block matching for multiresolution motion estimation
    Leconge, R
    Laligant, O
    Truchetet, F
    HIGH-SPEED IMAGING AND SEQUENCE ANALYSIS II, 2000, 3968 : 10 - 21
  • [18] Clutter modeling for subsurface detection in hyperspectral imagery using Markov random fields
    Masalmah, YM
    Vélez-Reyes, M
    Jiménez-Rodríguez, LO
    IMAGING SPECTROMETRY IX, 2003, 5159 : 52 - 63
  • [19] Micro calcification clusters detection by using gaussian markov random fields representation
    Zhang, Xinsheng
    Luo, Zhengshan
    Wang, Minghu
    Research Journal of Applied Sciences, Engineering and Technology, 2012, 4 (18) : 3425 - 3431
  • [20] Collective Activity Detection using Hinge-loss Markov Random Fields
    London, Ben
    Khamis, Sameh
    Bach, Stephen H.
    Huang, Bert
    Getoor, Lise
    Davis, Larry
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2013, : 566 - 571