Human motion detection using Markov random fields

被引:6
|
作者
Cao, Xiao-Qin [1 ]
Liu, Zhi-Qiang [1 ]
机构
[1] City Univ Hong Kong, Sch Creat Media, Kowloon Tong, Hong Kong, Peoples R China
关键词
Human motion; Markov random fields; Relaxation labeling; HUMAN POSE; TRACKING; MODEL;
D O I
10.1007/s12652-010-0015-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose Markov random fields (MRFs) to automatically detect a moving human body through minimizing the joint energy of the MRF for the velocity and relative position of body parts. The relaxation labeling algorithm is employed to find the best body part labeling configuration between MRFs and observed data. We detect a walking motion viewed monocularly based on point features, where some points are from the unoccluded body parts and some belong to the background. The results show that MRFs can detect human motions robustly and accurately.
引用
收藏
页码:211 / 220
页数:10
相关论文
共 50 条
  • [1] Human motion detection using Markov random fields
    Xiao-Qin Cao
    Zhi-Qiang Liu
    Journal of Ambient Intelligence and Humanized Computing, 2010, 1 : 211 - 220
  • [2] MULTIPLE CUE DATA FUSION USING MARKOV RANDOM FIELDS FOR MOTION DETECTION
    Vivet, Marc
    Martinez, Brais
    Binefa, Xavier
    VISAPP 2009: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 2, 2009, : 529 - +
  • [3] Face detection and recognition of natural human emotion using Markov random fields
    Ilias Maglogiannis
    Demosthenes Vouyioukas
    Chris Aggelopoulos
    Personal and Ubiquitous Computing, 2009, 13 : 95 - 101
  • [4] Face detection and recognition of natural human emotion using Markov random fields
    Maglogiannis, Ilias
    Vouyioukas, Demosthenes
    Aggelopoulos, Chris
    PERSONAL AND UBIQUITOUS COMPUTING, 2009, 13 (01) : 95 - 101
  • [5] MOTION SEGMENTATION IN COMPRESSED VIDEO USING MARKOV RANDOM FIELDS
    Chen, Yue-Meng
    Bajic, Ivan V.
    Saeedi, Parvaneh
    2010 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME 2010), 2010, : 760 - 765
  • [6] Motion estimation with Markov random fields by using a direct algorithm
    Kardouchi, M
    Dipanda, A
    Legrand, L
    NEW IMAGE PROCESSING TECHNIQUES AND APPLICATIONS: ALGORITHMS, METHODS, AND COMPONENTS II, 1997, 3101 : 95 - 103
  • [7] Vehicle Headlights Detection Using Markov Random Fields
    Zhang, Wei
    Wu, Q. M. Jonathan
    Wang, Guanghui
    COMPUTER VISION - ACCV 2009, PT I, 2010, 5994 : 169 - 179
  • [8] Defect detection using hidden Markov random fields
    Dogandzic, A
    Eua-anant, N
    Zhang, BH
    REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 24A AND 24B, 2005, 760 : 704 - 711
  • [9] Fake News Detection using Deep Markov Random Fields
    Nguyen, Duc Minh
    Do, Tien Huu
    Calderbank, Robert
    Deligiannis, Nikos
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 1391 - 1400
  • [10] Fire Detection in Color Images Using Markov Random Fields
    Van Hamme, David
    Veelaert, Peter
    Philips, Wilfried
    Teelen, Kristof
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, PT II, 2010, 6475 : 88 - +