共 50 条
Freestanding MoO2/Mo2C imbedded carbon fibers for Li-ion batteries
被引:42
|作者:
Li, Hongqin
[1
]
Ye, Haijun
[1
]
Xu, Zheng
[1
]
Wang, Chuanyi
[2
]
Yin, Jiao
[2
]
Zhu, Hui
[1
,3
]
机构:
[1] Nanchang Univ, Coll Chem, 999 Xuefu Ave, Nanchang 330031, Jiangxi, Peoples R China
[2] Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Key Lab Funct Mat & Devices Special Environm, 40-1 South Beijing Rd, Urumqi 830011, Xinjiang, Peoples R China
[3] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun, Jilin, Peoples R China
关键词:
BINDER-FREE ANODE;
HIGH-PERFORMANCE;
HIGH-CAPACITY;
RATE CAPABILITY;
LITHIUM;
NANOFIBERS;
HYBRID;
LAYER;
MOLYBDENUM;
NANOSHEETS;
D O I:
10.1039/c6cp07569j
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Flexible and freestanding MoO2/Mo2C imbedded carbon fibers (MoO2/Mo2C ICFs) have been successfully synthesized via an integrated procedure including electrospinning, thermo-plastication in air and reduction/carbonization at high temperature. A series of techniques such as SEM, TEM, N-2 adsorption-desorption analysis, XRD, TGA, IR and XPS have been employed to systemically characterize the MoO2/Mo2C ICFs. In particular, it is observed that the MoO2/Mo2C ICFs derived from phosphomolybdic acid have more highly porous structures than those derived from molybdic acid. Most impressively, the obtained MoO2/Mo2C ICFs are directly used as binder-and current collector-free anode materials for LIBs, which exhibit desirable rate capability and satisfactory cycling performance. The electrochemical investigations illustrated that the MoO2/Mo2C ICFs could deliver an initial discharging capacity of 1422.0 mA h g(-1) with an original coulombic efficiency of 63.3%, and the subsequent reversible capacity could reach as high as 1103.6 mA h g(-1) even after 70 cycles at a current density of 0.1 A g(-1). Such a capacity is larger than the theoretical capacity of MoO2 (838 mA h g(-1)) and pure carbon fibers (460.5 mA h g(-1)). More importantly, the MoO2/Mo2C ICFs exhibited an excellent rate performance with a capacity of 445.4 mA h g(-1) even at a charging current density of 1.6 A g(-1). The remarkable enhancement in rate capability and long cycling performance resulted from a synergistic effect between the MoO2 nanoparticles and porous carbon fiber matrix. This methodology can be widely extended to fabricate other metal oxide/carbon composites for significant energy storage and conversion applications.
引用
收藏
页码:2908 / 2914
页数:7
相关论文