Detecting False Data Injection Attacks Against Power System State Estimation With Fast Go-Decomposition Approach

被引:86
|
作者
Li, Boda [1 ,2 ]
Ding, Tao [1 ,2 ]
Huang, Can [3 ]
Zhao, Junbo [4 ]
Yang, Yongheng [5 ]
Chen, Ying [2 ]
机构
[1] Xi An Jiao Tong Univ, Dept Elect Engn, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Shaanxi, Peoples R China
[2] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[3] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[4] Virginia Polytech Inst & State Univ, Bradley Dept Elect & Comp Engn, Falls Church, VA 22043 USA
[5] Aalborg Univ, Dept Energy Technol, DK-9220 Aalborg, Denmark
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Cyber security; false data injection attacks (FDIA); matrix separation; smart grid; state estimation (SE); LOW-RANK; DEFENSE;
D O I
10.1109/TII.2018.2875529
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
State estimation is a fundamental function in modern energy management system, but its results may be vulnerable to false data injection attacks (FDIAs). FDIA is able to change the estimation results without being detected by the traditional bad data detection algorithms. In this paper, we propose an accurate and computational attractive approach for FDIA detection. We first rely on the low rank characteristic of the measurement matrix and the sparsity of the attack matrix to reformulate the FDIA detection as a matrix separation problem. Then, four algorithms that solve this problem are presented and compared, including the traditional augmented Lagrange multipliers (ALMs), double-noise-dual-problem (DNDP) ALM, the low rank matrix factorization, and the proposed new "Go Decomposition (GoDec)." Numerical simulation results show that our GoDec algorithm outperforms the other three alternatives and demonstrates a much higher computational efficiency. Furthermore, GoDec is shown to be able to handle measurement noise and applicable for large-scale attacks.
引用
收藏
页码:2892 / 2904
页数:13
相关论文
共 50 条
  • [41] Sensor Scheduling-Based Detection of False Data Injection Attacks in Power System State Estimation
    Obata, Sho
    Kobayashi, Koichi
    Yamashita, Yuh
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2021,
  • [42] Sensor Scheduling-Based Detection of False Data Injection Attacks in Power System State Estimation
    Obata, Sho
    Kobayashi, Koichi
    Yamashita, Yuh
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2022, E105A (06) : 1015 - 1019
  • [43] Impact analysis of false data injection attacks on distribution system state estimation
    Molnar, Martin
    Vokony, Istvan
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2021 5TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2021,
  • [44] Effects of Switching Network Topologies on Stealthy False Data Injection Attacks Against State Estimation in Power Networks
    Wang, Shaocheng
    Ren, Wei
    Al-Saggaf, Ubaid M.
    IEEE SYSTEMS JOURNAL, 2017, 11 (04): : 2640 - 2651
  • [45] A Semidefinite Programming Relaxation under False Data Injection Attacks against Power Grid AC State Estimation
    Jin, Ming
    Lavaei, Javad
    Johansson, Karl
    2017 55TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2017, : 236 - 243
  • [46] Modelling False Data Injection Attacks Against Non-linear State Estimation in AC Power Systems
    Nayak, Jay
    Al-Anbagi, Irfan
    8TH INTERNATIONAL CONFERENCE ON SMART GRID (ICSMARTGRID2020), 2020, : 37 - 42
  • [47] Optimal False Data Injection Attacks Against Power System Frequency Stability
    Jafari, Mohamadsaleh
    Rahman, Mohammad Ashiqur
    Paudyal, Sumit
    IEEE TRANSACTIONS ON SMART GRID, 2023, 14 (02) : 1276 - 1288
  • [48] Optimal False Data Injection Attacks Against Power System Frequency Stability
    Jafari, Mohamadsaleh
    Rahman, Mohammad
    Paudyal, Sumit
    2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM, 2023,
  • [49] A Highly Discriminative Detector against False Data Injection Attacks in AC State Estimation
    Cheng, Gang
    Lin, Yuzhang
    Zhao, Junbo
    Yan, Jun
    2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM, 2023,
  • [50] A Case Study on Implementing False Data Injection Attacks Against Nonlinear State Estimation
    Konstantinou, Charalambos
    Maniatakos, Michail
    CPS-SPC'16: PROCEEDINGS OF THE 2ND ACM WORKSHOP ON CYBER-PHYSICAL SYSTEMS SECURITY & PRIVACY, 2016, : 81 - 91