nonlinear SOR methods;
convergence;
non-smooth analysis;
D O I:
10.1002/nla.256
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We study the choice of relaxation parameters omega for convergence of the SOR Newton method and the SOR method for the system of equations F(.x) = 0 in a unified framework, where F is strongly monotone, locally Lipschitz continuous but not necessarily differentiable. Applications to non-smooth Dirichlet problems are discussed. Copyright (C) 2001 John Wiley Sons, Ltd.
机构:
Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
Wang, Li
Liu, Qingsheng
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
Liu, Qingsheng
Zhou, Xiaoxia
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
Nanjing Forestry Univ, Coll Sci, Nanjing 210037, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China