机构:Univ Strasbourg, UFR Math, F-67084 Strasbourg, France
Bugeaud, Y
Mignotte, M
论文数: 0引用数: 0
h-index: 0
机构:Univ Strasbourg, UFR Math, F-67084 Strasbourg, France
Mignotte, M
机构:
[1] Univ Strasbourg, UFR Math, F-67084 Strasbourg, France
[2] CNRS, F-67084 Strasbourg, France
来源:
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE
|
1999年
/
328卷
/
09期
关键词:
D O I:
10.1016/S0764-4442(99)80263-8
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We announce several new theorems on the Diophantine equation (x(n) - 1)/(x - 1) = y(q), which include the fact that any integer greater than 2 and with all digits equal to 1 in base ten cannot be a pure power. We then apply these results to solve this equation for any integer x of the form x = z(t) with 2 less than or equal to z less than or equal to 10000 and t greater than or equal to 1. (C) Academie des Sciences/Elsevier, Paris.
机构:
CHONGQING TEACHERS COLL,DEPT MATH,CHONGQING 630047,SICHUAN,PEOPLES R CHINACHONGQING TEACHERS COLL,DEPT MATH,CHONGQING 630047,SICHUAN,PEOPLES R CHINA