Ordinary and degenerate Euler numbers and polynomials

被引:3
|
作者
Kim, Taekyun [1 ,2 ]
Kim, Dae San [3 ]
Kim, Han Young [2 ]
Kwon, Jongkyum [4 ]
机构
[1] Xian Technol Univ, Sch Sci, Xian, Shaanxi, Peoples R China
[2] Kwangwoon Univ, Dept Math, Seoul, South Korea
[3] Sogang Univ, Dept Math, Seoul, South Korea
[4] Gyeongsang Natl Univ, Dept Math Educ & ERI, Jinju, South Korea
关键词
Euler polynomials and numbers; Degenerate Euler polynomials and numbers; Alternating integer power sum polynomials; Degenerate alternating integer power sum polynomials;
D O I
10.1186/s13660-019-2221-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study some identities on Euler numbers and polynomials, and those on degenerate Euler numbers and polynomials which are derived from the fermionic p-adic integrals on Specifically, we obtain a recursive formula for alternating integer power sums and representations of alternating integer power sum polynomials in terms of Euler polynomials and Stirling numbers of the second kind, as well as various properties about Euler numbers and polynomials. In addition, we deduce representations of degenerate alternating integer power sum polynomials in terms of degenerate Euler polynomials and degenerate Stirling numbers of the second kind, as well as certain properties on degenerate Euler numbers and polynomials.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] On Fully Degenerate Bell Numbers and Polynomials
    Dolgy, Dmitry, V
    Kim, Dae San
    Kim, Taekyun
    Kwon, Jongkyum
    FILOMAT, 2020, 34 (02) : 507 - 514
  • [42] On modified degenerate Changhee polynomials and numbers
    Kwon, Jongkyum
    Park, Jin-Woo
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (12): : 6294 - 6301
  • [43] A note on degenerate derangement polynomials and numbers
    Kim, Taekyun
    Kim, Dae San
    Lee, Hyunseok
    Jang, Lee-Chae
    AIMS MATHEMATICS, 2021, 6 (06): : 6469 - 6481
  • [44] A note on generalized Euler numbers and polynomials
    Ryoo, C. S.
    Kim, T.
    Jang, L. C.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (07) : 1099 - 1111
  • [45] A New Type of Euler Polynomials and Numbers
    M. Masjed-Jamei
    M. R. Beyki
    W. Koepf
    Mediterranean Journal of Mathematics, 2018, 15
  • [46] IDENTITIES FOR THE BERNOULLI AND EULER NUMBERS AND POLYNOMIALS
    Kim, T.
    Lee, B.
    Lee, S. H.
    Rim, S-H.
    ARS COMBINATORIA, 2012, 107 : 325 - 337
  • [47] Hypergeometric degenerate Bernoulli polynomials and numbers
    Komatsu, Takao
    ARS MATHEMATICA CONTEMPORANEA, 2020, 18 (01) : 163 - 177
  • [48] Identities involving degenerate Euler numbers and polynomials arising from non-linear differential equations
    Kim, Taekyun
    Kim, Dae San
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 2086 - 2098
  • [49] Some Identities Involving Degenerate Stirling Numbers Associated with Several Degenerate Polynomials and Numbers
    Kim, T. K.
    Kim, D. S.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2023, 30 (01) : 62 - 75
  • [50] Some Identities Involving Degenerate Stirling Numbers Associated with Several Degenerate Polynomials and Numbers
    T. K. Kim
    D. S. Kim
    Russian Journal of Mathematical Physics, 2023, 30 : 62 - 75