DARBOUX POLYNOMIALS FOR LOTKA-VOLTERRA SYSTEMS IN THREE DIMENSIONS

被引:17
|
作者
Christodoulides, Yiannis T. [1 ]
Damianou, Pantelis A. [1 ]
机构
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
关键词
Lotka-Volterra model; integrability; Darboux polynomials; HAMILTONIAN-SYSTEMS; 1ST INTEGRALS; DIFFERENTIAL-EQUATIONS; TODA LATTICE; INVARIANTS; INTEGRABILITY; FAMILIES;
D O I
10.1142/S1402925109000261
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Lotka-Volterra systems in three dimensions depending on three real parameters. By using elementary algebraic methods we classify the Darboux polynomials (also known as second integrals) for such systems for various values of the parameters, and give the explicit form of the corresponding cofactors. More precisely, we show that a Darboux polynomial of degree greater than one is reducible. In fact, it is a product of linear Darboux polynomials and first integrals.
引用
收藏
页码:339 / 354
页数:16
相关论文
共 50 条
  • [21] On impulsive Lotka-Volterra systems with diffusion
    Struk O.O.
    Tkachenko V.I.
    Ukrainian Mathematical Journal, 2002, 54 (4) : 629 - 646
  • [22] Lotka-Volterra Systems with Periodic Orbits
    Kobayashi, Manami
    Suzuki, Takashi
    Yamada, Yoshio
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2019, 62 (01): : 129 - 155
  • [23] Integrable deformations of Lotka-Volterra systems
    Ballesteros, Angel
    Blasco, Alfonso
    Musso, Fabio
    PHYSICS LETTERS A, 2011, 375 (38) : 3370 - 3374
  • [24] Integrability and linearizability of the Lotka-Volterra systems
    Liu, CJ
    Chen, GT
    Li, CZ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 198 (02) : 301 - 320
  • [25] Stability of neutral Lotka-Volterra systems
    Yi, Z
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 199 (02) : 391 - 402
  • [26] Chaos in perturbed Lotka-Volterra systems
    Christie, JR
    Gopalsamy, K
    Li, JB
    ANZIAM JOURNAL, 2001, 42 : 399 - 412
  • [27] A Counterexample to a Result on Lotka-Volterra Systems
    Llibre, Jaume
    ACTA APPLICANDAE MATHEMATICAE, 2016, 142 (01) : 123 - 125
  • [28] Lotka-Volterra systems integrable in quadratures
    Bogoyavlenskij, Oleg
    Itoh, Yoshiaki
    Yukawa, Tetsuyuki
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (05)
  • [29] DYNAMICS OF LOTKA-VOLTERRA SYSTEMS WITH EXPLOITATION
    DERRICK, W
    METZGAR, L
    JOURNAL OF THEORETICAL BIOLOGY, 1991, 153 (04) : 455 - 468
  • [30] On global stabilization of Lotka-Volterra systems
    Vega, VM
    Aeyels, D
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 419 - 424