DARBOUX POLYNOMIALS FOR LOTKA-VOLTERRA SYSTEMS IN THREE DIMENSIONS

被引:17
|
作者
Christodoulides, Yiannis T. [1 ]
Damianou, Pantelis A. [1 ]
机构
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
关键词
Lotka-Volterra model; integrability; Darboux polynomials; HAMILTONIAN-SYSTEMS; 1ST INTEGRALS; DIFFERENTIAL-EQUATIONS; TODA LATTICE; INVARIANTS; INTEGRABILITY; FAMILIES;
D O I
10.1142/S1402925109000261
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Lotka-Volterra systems in three dimensions depending on three real parameters. By using elementary algebraic methods we classify the Darboux polynomials (also known as second integrals) for such systems for various values of the parameters, and give the explicit form of the corresponding cofactors. More precisely, we show that a Darboux polynomial of degree greater than one is reducible. In fact, it is a product of linear Darboux polynomials and first integrals.
引用
收藏
页码:339 / 354
页数:16
相关论文
共 50 条
  • [1] Darboux Polynomials for Lotka—Volterra Systems in Three Dimensions
    Yiannis T. Christodoulides
    Pantelis A. Damianou
    Journal of Nonlinear Mathematical Physics, 2009, 16 : 339 - 354
  • [2] Linear Darboux polynomials for Lotka-Volterra systems, trees and superintegrable families
    Quispel, G. R. W.
    Tapley, Benjamin K.
    McLaren, D., I
    van der Kamp, Peter H.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (31)
  • [3] Darboux integrability for 3D Lotka-Volterra systems
    Cairó, L
    Llibre, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (12): : 2395 - 2406
  • [4] Hamiltonian structure and Darboux theorem for families of generalized Lotka-Volterra systems
    Hernández-Bermejo, B
    Fairén, V
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (11) : 6162 - 6174
  • [5] Darboux method and search of invariants for the Lotka-Volterra and complex quadratic systems
    Cairó, L
    Feix, MR
    Llibre, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (04) : 2074 - 2091
  • [6] Phase portraits of quadratic Lotka-Volterra systems with a Darboux invariant in the Poincare disc
    Bolanos, Yudy
    Llibre, Jaume
    Valls, Claudia
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (06)
  • [7] The three-dimensional generalized Lotka-Volterra systems
    Bobienski, M
    Zoladek, H
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 : 759 - 791
  • [8] The integration of three-dimensional Lotka-Volterra systems
    Maier, Robert S.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2158):
  • [9] STABILITY OF LOTKA-VOLTERRA SYSTEMS
    TULJAPURKAR, SD
    SEMURA, JS
    NATURE, 1975, 257 (5525) : 388 - 389
  • [10] Integrable Lotka-Volterra systems
    O. I. Bogoyavlenskij
    Regular and Chaotic Dynamics, 2008, 13 : 543 - 556