Combinatorial method for bandwidth selection in wind speed kernel density estimation

被引:7
|
作者
El-Dakkak, Omar [1 ,2 ]
Feng, Samuel [3 ]
Wahbah, Maisam [4 ]
EL-Fouly, Tarek H. M. [4 ]
Zahawi, Bashar [4 ]
机构
[1] Univ Paris Nanterre, Lab ModalX, Paris, France
[2] Sorbonne Univ Abu Dhabi, Dept Sci & Engn, Abu Dhabi 38044, U Arab Emirates
[3] Khalifa Univ, Dept Math, Abu Dhabi 127788, U Arab Emirates
[4] Khalifa Univ, Dept Elect Engn & Comp Sci, Adv Power & Energy Ctr, Abu Dhabi 127788, U Arab Emirates
关键词
wind power; statistical distributions; wind power plants; estimation theory; combinatorial mathematics; statistical testing; wind speed modelling; bandwidth selection; wind speed kernel density estimation; accurate estimation; wind speed probability density; given site; wind farm; devising probabilistic models; adaptive algorithms; wind speed distributions; nonparametric combinatorial method; accurate nonparametric kernel density estimation-based statistical model; bandwidth parameter; true densities; hypothesised densities; popular parametric models; Thumb-based KDE model; KDE methods; mean integrated absolute error; standard goodness-of-fit and statistical tests; PROBABILITY-DISTRIBUTION; SYSTEMS; PENETRATION;
D O I
10.1049/iet-rpg.2018.5643
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate estimation of wind speed probability density at a given site is crucial in maximising the yield of a wind farm. This goal calls for devising probabilistic models with adaptive algorithms that accurately fit wind speed distributions. In this study, a non-parametric combinatorial method is implemented for obtaining an accurate non-parametric kernel density estimation (KDE)-based statistical model of wind speed, in which the selection of the bandwidth parameter is optimised concerning mean integrated absolute error ($L_1$L1 error) between the true and hypothesised densities. The proposed model is compared with three popular parametric models and Rule of Thumb-based KDE model using standard goodness-of-fit and statistical tests. Results confirm the suitability of KDE methods for wind speed modelling and the accuracy of the proposed implemented combinatorial method. It is worthwhile mentioning that the implemented procedure is adaptive (i.e. data driven) and robust.
引用
收藏
页码:1670 / 1680
页数:11
相关论文
共 50 条
  • [31] Bandwidth selection for kernel density estimation: a review of fully automatic selectors
    Heidenreich, Nils-Bastian
    Schindler, Anja
    Sperlich, Stefan
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2013, 97 (04) : 403 - 433
  • [32] Plug-in Bandwidth Selection for Kernel Density Estimation with Discrete Data
    Chu, Chi-Yang
    Henderson, Daniel J.
    Parmeter, Christopher F.
    ECONOMETRICS, 2015, 3 (02): : 199 - 214
  • [33] GRAPHICS PROCESSING UNITS IN ACCELERATION OF BANDWIDTH SELECTION FOR KERNEL DENSITY ESTIMATION
    Andrzejewski, Witold
    Gramacki, Artur
    Gramacki, Jaroslaw
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2013, 23 (04) : 869 - 885
  • [34] Bandwidth selection for kernel density estimation using Fourier domain constraints
    Suhre, Alexander
    Arikan, Orhan
    Cetin, Ahmed Enis
    IET SIGNAL PROCESSING, 2016, 10 (03) : 280 - 283
  • [36] Subsampling-extrapolation bandwidth selection in bivariate kernel density estimation
    Wang, Qing
    Zambom, Adriano Z.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (09) : 1740 - 1759
  • [37] Bandwidth selection for kernel density estimation with length-biased data
    Borrajo, M. I.
    Gonzalez-Manteiga, W.
    Martinez-Miranda, M. D.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2017, 29 (03) : 636 - 668
  • [38] Bandwidth selection in kernel density estimation for interval-grouped data
    Miguel Reyes
    Mario Francisco-Fernández
    Ricardo Cao
    TEST, 2017, 26 : 527 - 545
  • [39] Bootstrap bandwidth selection in kernel density estimation from a contaminated sample
    Delaigle, A
    Gijbels, I
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2004, 56 (01) : 19 - 47