Optimal classical and quantum real and complex dimension witness

被引:6
|
作者
Batle, Josep [1 ,2 ]
Bednorz, Adam [3 ]
机构
[1] Inst IES Can Peu Blanc, C Ronda Nord 19, Sa Pobla 07420, Balearic Island, Spain
[2] Univ Illes Balears, Dept Fis, Palma De Mallorca 07122, Balearic Island, Spain
[3] Univ Warsaw, Fac Phys, Ulica Pasteura 5, PL-02093 Warsaw, Poland
关键词
MECHANICS;
D O I
10.1103/PhysRevA.105.042433
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We find the minimal number of independent preparations and measurements certifying the dimension of a classical or quantum system limited to d states, optionally reduced to the real subspace. As a dimension certificate, we use the linear independence tested by a determinant. We find the sets of preparations and measurements that maximize the chance to detect larger space if the extra contribution is very small. We discuss the practical application of the test to certify the space logical operations on a quantum computer.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Optimal vs. classical linear dimension reduction
    Röhl, MC
    Weihs, C
    CLASSIFICATION IN THE INFORMATION AGE, 1999, : 252 - 259
  • [12] Classical and quantum periodically driven scattering in one dimension
    Henseler, M
    Dittrich, T
    Richter, K
    PHYSICAL REVIEW E, 2001, 64 (04):
  • [13] Optimal quantum teleportation fidelity in arbitrary dimension
    Gong, Neng-Fei
    Cai, Dun-Bo
    Huang, Zhi-Guo
    Qian, Ling
    Zhang, Run-Qing
    Hu, Xiao-Min
    Liu, Bi-Heng
    Wang, Tie-Jun
    PHYSICAL REVIEW APPLIED, 2024, 22 (05):
  • [14] Complex networks from classical to quantum
    Biamonte, Jacob
    Faccin, Mauro
    De Domenico, Manlio
    COMMUNICATIONS PHYSICS, 2019, 2 (1)
  • [15] Complex networks from classical to quantum
    Jacob Biamonte
    Mauro Faccin
    Manlio De Domenico
    Communications Physics, 2
  • [16] The Surprising Ease of Finding Optimal Solutions for Controlling Nonlinear Phenomena in Quantum and Classical Complex Systems
    Rabitz, Herschel
    Russell, Benjamin
    Ho, Tak-San
    JOURNAL OF PHYSICAL CHEMISTRY A, 2023, 127 (19): : 4224 - 4236
  • [17] Hybrid Quantum-Classical Approach to Quantum Optimal Control
    Li, Jun
    Yang, Xiaodong
    Peng, Xinhua
    Sun, Chang-Pu
    PHYSICAL REVIEW LETTERS, 2017, 118 (15)
  • [18] On the optimal error exponents for classical and quantum antidistinguishability
    Mishra, Hemant K.
    Nussbaum, Michael
    Wilde, Mark M.
    LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (03)
  • [19] Optimal transport pseudometrics for quantum and classical densities
    Golse, Francois
    Paul, Thierry
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (09)
  • [20] Optimal encoding of classical information in a quantum medium
    Elron, Noam
    Eldar, Yonina C.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (05) : 1900 - 1907