New Ramanujan-like congruences modulo powers of 2 and 3 for overpartitions

被引:71
|
作者
Yao, Olivia X. M. [1 ]
Xia, Ernest X. W. [1 ]
机构
[1] Jiangsu Univ, Dept Math, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Overpartition; Congruence; 2-Dissection; ANALOGS;
D O I
10.1016/j.jnt.2012.11.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (p) over bar (n) denote the number of overpartitions of n. In recent works, Fortin, Jacob and Mathieu, and Hirschhorn and Sellers established some congruences modulo powers of 2 for (p) over bar (n). Much less is known for powers of 3. In this paper, employing elementary generating function dissection techniques, we prove that for all nonnegative integers n, (p) over bar (24n + 19) equivalent to 0 (mod 27) and (p) over bar (92n + 12) equivalent to 0 (mod 9). Furthermore, we also derive some new congruences modulo powers of 2 for (p) over bar (n). (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1932 / 1949
页数:18
相关论文
共 50 条
  • [31] Combinatorial proofs of the Ramanujan type congruences modulo 3
    Hao, Robert X. J.
    DISCRETE MATHEMATICS, 2022, 345 (05)
  • [32] Interesting Ramanujan-Like Series Associated with Powers of Central Binomial Coefficients
    Chen, Hongwei
    JOURNAL OF INTEGER SEQUENCES, 2022, 25 (01)
  • [33] NEW CONGRUENCES MODULO 4 AND 8 FOR RAMANUJAN'S φ FUNCTION
    Du, Julia Q. D.
    Lovejoy, Jeremy
    Yao, Olivia X. M.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (02) : 551 - 564
  • [34] Some congruences modulo 2, 8 and 12 for Andrews' singular overpartitions
    Pore, Utpal
    Fathima, S. N.
    NOTE DI MATEMATICA, 2018, 38 (01): : 101 - 114
  • [35] ON 3-AND 9-REGULAR OVERPARTITIONS MODULO POWERS OF 3
    Bharadwaj, H. S. Sumanth
    Hemanthkumar, B.
    Naika, M. S. Mahadeva
    COLLOQUIUM MATHEMATICUM, 2018, 154 (01) : 121 - 130
  • [36] Congruence properties modulo powers of 2 for overpartitions and overpartition pairs
    Tang, Dazhao
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (02) : 357 - 380
  • [37] Congruences modulo powers of 3 for 2-color partition triples
    Tang, Dazhao
    PERIODICA MATHEMATICA HUNGARICA, 2019, 78 (02) : 254 - 266
  • [38] Congruences modulo powers of 3 for 2-color partition triples
    Dazhao Tang
    Periodica Mathematica Hungarica, 2019, 78 : 254 - 266
  • [39] Congruences for cubic partition pairs modulo powers of 3
    Lin, Bernard L. S.
    Wang, Liuquan
    Xia, Ernest X. W.
    RAMANUJAN JOURNAL, 2018, 46 (02): : 563 - 578
  • [40] Congruences for cubic partition pairs modulo powers of 3
    Bernard L. S. Lin
    Liuquan Wang
    Ernest X. W. Xia
    The Ramanujan Journal, 2018, 46 : 563 - 578