Weak convergence of varying measures and Hermite-Pade orthogonal polynomials

被引:11
|
作者
Ysern, BD [1 ]
Lagomasino, GL
机构
[1] Univ Politecn Madrid, ETS Ingn Ind, E-28040 Madrid, Spain
[2] Univ Carlos III Madrid, Escuela Politecn Super, E-28903 Getafe, Spain
关键词
orthogonal polynomials; varying measures; weak convergence; Nikishin system;
D O I
10.1007/s003659900122
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that the common denominator of the Hermite-Pade approximants of a mixed Angelesco-Nikishin system shares orthogonality relations with respect to each function in the system. It is less well known that they also satisfy full orthogonality with respect to a varying measure. This problem motivates our interest in extending the class of varying measures with respect to which weak asymptotics of orthogonal polynomials takes place. In particular, for the case of a Nikishin system, we prove weak asymptotics of the corresponding varying measures.
引用
收藏
页码:553 / 575
页数:23
相关论文
共 50 条
  • [21] Incomplete Pade approximation and convergence of row sequences of Hermite-Pade approximants
    Cacoq, J.
    de la Calle Ysern, B.
    Lopez Lagomasino, G.
    JOURNAL OF APPROXIMATION THEORY, 2013, 170 : 59 - 77
  • [22] On polynomials related with Hermite-Pade approximations to the exponential function
    Driver, KA
    Temme, NM
    JOURNAL OF APPROXIMATION THEORY, 1998, 95 (01) : 101 - 122
  • [23] Asymptotic properties of Hermite-Pade polynomials and Katz points
    Suetin, S. P.
    RUSSIAN MATHEMATICAL SURVEYS, 2022, 77 (06) : 1149 - 1151
  • [24] CONVERGENCE THEOREMS FOR ROWS OF HERMITE-PADE INTEGRAL APPROXIMANTS
    BAKER, GA
    GRAVESMORRIS, PR
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1991, 21 (01) : 41 - 69
  • [25] On the convergence of multi-level Hermite-Pade approximants
    Ricardo, L. G. Gonzalez
    Lagomasino, G. Lopez
    Peralta, S. Medina
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 440
  • [26] SOME CONVERGENCE AND DIVERGENCE THEOREMS FOR HERMITE-PADE APPROXIMANTS
    BAKER, GA
    GRAVESMORRIS, PR
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 59 (03) : 285 - 293
  • [27] On coefficient polynomials of cubic Hermite-Pade approximations to the exponential function
    Zheng, CD
    Wang, GC
    Li, ZB
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2005, 23 (04) : 383 - 392
  • [28] Asymptotics for quadratic Hermite-Pade polynomials associated with the exponential function
    Stahl, H
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2002, 14 : 195 - 222
  • [29] Asymptotics of Type I Hermite-Pade Polynomials for Semiclassical Functions
    Martinez-Finkelshtein, Andrei
    Rakhmanov, Evguenii A.
    Suetin, Sergey P.
    MODERN TRENDS IN CONSTRUCTIVE FUNCTION THEORY, 2016, 661 : 199 - +
  • [30] Logarithmic asymptotic of multi-level Hermite-Pade polynomials
    Gonzalez Ricardo, L. G.
    Lopez Lagomasino, G.
    Peralta, S. Medina
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2021, 32 (5-8) : 493 - 511