Hard versus fuzzy c-means clustering for color quantization

被引:34
|
作者
Wen, Quan [2 ]
Celebi, M. Emre [1 ]
机构
[1] Louisiana State Univ, Dept Comp Sci, Shreveport, LA 71105 USA
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 610054, Peoples R China
来源
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING | 2011年
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
K-MEANS; EDGE-DETECTION; ALGORITHM; SCHEME;
D O I
10.1186/1687-6180-2011-118
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Color quantization is an important operation with many applications in graphics and image processing. Most quantization methods are essentially based on data clustering algorithms. Recent studies have demonstrated the effectiveness of hard c-means (k-means) clustering algorithm in this domain. Other studies reported similar findings pertaining to the fuzzy c-means algorithm. Interestingly, none of these studies directly compared the two types of c-means algorithms. In this study, we implement fast and exact variants of the hard and fuzzy c-means algorithms with several initialization schemes and then compare the resulting quantizers on a diverse set of images. The results demonstrate that fuzzy c-means is significantly slower than hard c-means, and that with respect to output quality, the former algorithm is neither objectively nor subjectively superior to the latter.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] An Accelerated Fuzzy C-Means clustering algorithm
    Hershfinkel, D
    Dinstein, I
    APPLICATIONS OF FUZZY LOGIC TECHNOLOGY III, 1996, 2761 : 41 - 52
  • [42] Novel possibilistic fuzzy c-means clustering
    School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
    不详
    Tien Tzu Hsueh Pao, 2008, 10 (1996-2000):
  • [43] Hierarchically Structured Fuzzy c-Means Clustering
    Hye Won Suk
    Ji Yeh Choi
    Heungsun Hwang
    Behaviormetrika, 2013, 40 (1) : 1 - 17
  • [44] Suppressed fuzzy C-means clustering algorithm
    Fan, JL
    Zhen, WZ
    Xie, WX
    PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) : 1607 - 1612
  • [45] Relative entropy fuzzy c-means clustering
    Zarinbal, M.
    Zarandi, M. H. Fazel
    Turksen, I. B.
    INFORMATION SCIENCES, 2014, 260 : 74 - 97
  • [46] Diverse fuzzy c-means for image clustering
    Zhang, Lingling
    Luo, Minnan
    Liu, Jun
    Li, Zhihui
    Zheng, Qinghua
    PATTERN RECOGNITION LETTERS, 2020, 130 (130) : 275 - 283
  • [47] Soil clustering by fuzzy c-means algorithm
    Goktepe, AB
    Altun, S
    Sezer, A
    ADVANCES IN ENGINEERING SOFTWARE, 2005, 36 (10) : 691 - 698
  • [48] Robust Weighted Fuzzy C-Means Clustering
    Hadjahmadi, A. H.
    Homayounpour, M. A.
    Ahadi, S. M.
    2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 305 - 311
  • [49] Gaussian Collaborative Fuzzy C-Means Clustering
    Gao, Yunlong
    Wang, Zhihao
    Li, Huidui
    Pan, Jinyan
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2021, 23 (07) : 2218 - 2234
  • [50] On tolerant fuzzy c-means clustering and tolerant possibilistic clustering
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    SOFT COMPUTING, 2010, 14 (05) : 487 - 494