Tower tableaux and Schubert polynomials

被引:2
|
作者
Coskun, Olcay [1 ]
Taskin, Muge [1 ]
机构
[1] Bogazici Univ, Matemat Bolumu, TR-34342 Istanbul, Turkey
关键词
Schubert polynomial; Tower tableaux; Balanced labeling;
D O I
10.1016/j.jcta.2013.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the well-known condition of being a balanced labeling can be characterized in terms of the sliding algorithm on tower diagrams. The characterization involves a generalization of authors' Rothification algorithm. Using the characterization, we obtain descriptions of Schubert polynomials and Stanley symmetric functions. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1976 / 1995
页数:20
相关论文
共 50 条
  • [41] Transition formulas for involution Schubert polynomials
    Zachary Hamaker
    Eric Marberg
    Brendan Pawlowski
    Selecta Mathematica, 2018, 24 : 2991 - 3025
  • [42] Zero-one Schubert polynomials
    Alex Fink
    Karola Mészáros
    Avery St. Dizier
    Mathematische Zeitschrift, 2021, 297 : 1023 - 1042
  • [43] Transition formulas for involution Schubert polynomials
    Hamaker, Zachary
    Marberg, Eric
    Pawlowski, Brendan
    SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (04): : 2991 - 3025
  • [44] Schubert polynomials of types A-D
    Winkel, R
    MANUSCRIPTA MATHEMATICA, 1999, 100 (01) : 55 - 79
  • [45] SMOOTH SCHUBERT VARIETIES AND GENERALIZED SCHUBERT POLYNOMIALS IN ALGEBRAIC COBORDISM OF GRASSMANNIANS
    Hornbostel, Jens
    Perrin, Nicolas
    PACIFIC JOURNAL OF MATHEMATICS, 2018, 294 (02) : 401 - 422
  • [46] Tableau formulas for skew Schubert polynomials
    Tamvakis, Harry
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (04) : 1926 - 1943
  • [47] Schubert polynomials and degeneracy locus formulas
    Tamvakis, Harry
    SCHUBERT VARIETIES, EQUIVARIANT COHOMOLOGY AND CHARACTERISTIC CLASSES, IMPANGA 15, 2018, : 261 - 314
  • [48] SCHUBERT POLYNOMIALS FOR THE CLASSICAL-GROUPS
    BILLEY, S
    HAIMAN, M
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 8 (02) : 443 - 482
  • [49] SCHUBERT POLYNOMIALS, THETA AND ETA POLYNOMIALS, AND WEYL GROUP INVARIANTS
    Tamvakis, Harry
    MOSCOW MATHEMATICAL JOURNAL, 2021, 21 (01) : 191 - 226
  • [50] SOME COMBINATORIAL PROPERTIES OF SCHUBERT POLYNOMIALS
    BILLEY, SC
    JOCKUSCH, W
    STANLEY, RP
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1993, 2 (04) : 345 - 374