Collective heat capacity for quantum thermometry and quantum engine enhancements

被引:28
|
作者
Latune, C. L. [1 ,2 ]
Sinayskiy, I [1 ]
Petruccione, F. [1 ,2 ,3 ]
机构
[1] Univ KwaZulu Natal, Sch Chem & Phys, Quantum Res Grp, ZA-4001 Durban, Kwazulu Natal, South Africa
[2] Natl Inst Theoret Phys NITheP, ZA-4001 Kwa Zulu, South Africa
[3] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea
来源
NEW JOURNAL OF PHYSICS | 2020年 / 22卷 / 08期
基金
新加坡国家研究基金会;
关键词
quantum thermodynamics; quantum thermometry; collective effects; collective spin interaction; collective heat capacity; quantum heat engines; TEMPERATURE;
D O I
10.1088/1367-2630/aba463
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The performances of quantum thermometry in thermal equilibrium together with the output power of certain class of quantum engines share a common characteristic: both are determined by the heat capacity of the probe or working medium. After noticing that the heat capacity of spin ensembles can be significantly modified by collective coupling with a thermal bath, we build on the above observation to investigate the respective impact of such collective effect on quantum thermometry and quantum engines. We find that the precision of the temperature estimation is largely increased at high temperatures, reaching even the Heisenberg scaling-inversely proportional to the number of spins. For Otto engines operating close to the Carnot efficiency, collective coupling always enhances the output power. Some tangible experimental platforms are suggested.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Efficiency fluctuations of a quantum heat engine
    Denzler, Tobias
    Lutz, Eric
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [22] Theory of an optomechanical quantum heat engine
    Zhang, Keye
    Bariani, Francesco
    Meystre, Pierre
    PHYSICAL REVIEW A, 2014, 90 (02):
  • [23] A supercharged photonic quantum heat engine
    Kim, Moochan
    Scully, Marlan
    Svidzinsky, Anatoly
    NATURE PHOTONICS, 2022, 16 (10) : 669 - 670
  • [24] Quantum limits of thermometry
    Stace, Thomas M.
    PHYSICAL REVIEW A, 2010, 82 (01):
  • [25] Temperature-heat uncertainty relation in nonequilibrium quantum thermometry
    Zhang, Ning
    Bai, Si-Yuan
    Chen, Chong
    PHYSICAL REVIEW A, 2024, 110 (01)
  • [26] Optomechanical Quantum Thermometry
    Purdy, Thomas P.
    Singh, Robinjeet
    Klimov, Nikolai N.
    Ahmed, Zeeshan
    Grutter, Karen
    Srinivasan, Kartik
    Taylor, Jacob M.
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [27] Collisional Quantum Thermometry
    Seah, Stella
    Nimmrichter, Stefan
    Grimmer, Daniel
    Santos, Jader P.
    Scarani, Valerio
    Landi, Gabriel T.
    PHYSICAL REVIEW LETTERS, 2019, 123 (18)
  • [28] Quantum Enhancements for AlphaZero
    Chao, James
    Crowe, Sean T.
    Rodriguez, Ramiro
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 2179 - 2186
  • [29] Quantum blackbody thermometry
    Norrgard, Eric B.
    Eckel, Stephen P.
    Holloway, Christopher L.
    Shirley, Eric L.
    NEW JOURNAL OF PHYSICS, 2021, 23 (03):
  • [30] Global Quantum Thermometry
    Rubio, Jesus
    Anders, Janet
    Correa, Luis A.
    PHYSICAL REVIEW LETTERS, 2021, 127 (09)