A Grey Model-Least Squares Support Vector Machine Method for Time Series Prediction

被引:3
|
作者
Wang, Ai [1 ]
Gao, Xuedong [1 ]
机构
[1] Univ Sci & Technol Beijing, 30 Xueyuan Rd, Beijing, Peoples R China
来源
TEHNICKI VJESNIK-TECHNICAL GAZETTE | 2020年 / 27卷 / 04期
基金
中国国家自然科学基金;
关键词
economic growth; grey model; least squares support vector machine; time series prediction; FREEWAY;
D O I
10.17559/TV-20200430034527
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, the authors aim to solve the time series prediction problem through pre-predicting multiple influence factors of the target sequence. Focusing on two pre-prediction approaches of influence factors (i.e., factors driven approach and time driven approach), we propose a time series prediction method based on the least squares support vector machine and grey model (GM-LSSVM). This method could improve the prediction precision of the target time series by differentiating the data characteristics of influence factors. A case study is put forward to predict China's economy from the perspective of system innovation and technological innovation. We selected public statistics data from 2005 to 2014 from the national bureau. The numerical experiment results illustrate that the accuracy of the GM-LSSVM is able to reach 95%, which proves the effectiveness of our proposed method in practice.
引用
收藏
页码:1126 / 1133
页数:8
相关论文
共 50 条
  • [41] Prediction of Coal Ash Fusion Temperature by Least-Squares Support Vector Machine Model
    Zhao, Bingtao
    Zhang, Zhongxiao
    Wu, Xiaojiang
    ENERGY & FUELS, 2010, 24 (05) : 3066 - 3071
  • [42] A WAVELET SUPPORT VECTOR MACHINE COUPLED METHOD FOR TIME SERIES PREDICTION
    Ben Mabrouk, Anouar
    Kortas, Hedi
    Dhifaoui, Zouhaier
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2008, 6 (06) : 851 - 868
  • [43] Least squares support vector machine classifiers
    Katholieke Universiteit Leuven, Department of Electrical Engineering, ESAT-SISTA Kardinaal, Mercierlaan 94, B-3001 Leuven , Belgium
    Neural Process Letters, 3 (293-300):
  • [44] Semisupervised Least Squares Support Vector Machine
    Adankon, Mathias M.
    Cheriet, Mohamed
    Biem, Alain
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (12): : 1858 - 1870
  • [45] Least squares support vector machine ensemble
    Sun, BY
    Huang, DS
    2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 2013 - 2016
  • [46] Least Squares Support Vector Machine Classifiers
    J.A.K. Suykens
    J. Vandewalle
    Neural Processing Letters, 1999, 9 : 293 - 300
  • [47] Least squares support vector machine classifiers
    Suykens, JAK
    Vandewalle, J
    NEURAL PROCESSING LETTERS, 1999, 9 (03) : 293 - 300
  • [48] Dynamic least squares support vector machine
    Fan, Yugang
    Li, Ping
    Song, Zhihuan
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 4886 - +
  • [49] Research on Modeling Method Based on Least Squares Support Vector Machine
    Xu, Jun
    Du, Kang
    Zhang, Yaohui
    Zhu, Xiaobing
    PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND ELECTRONICS INFORMATION (ICACSEI 2013), 2013, 41 : 665 - 667
  • [50] Fast method for sparse least squares support vector regression machine
    College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    Kongzhi yu Juece Control Decis, 2008, 12 (1347-1352):