Cavity-based architecture to preserve quantum coherence and entanglement

被引:156
|
作者
Man, Zhong-Xiao [1 ]
Xia, Yun-Jie [1 ]
Lo Franco, Rosario [2 ,3 ,4 ]
机构
[1] Qufu Normal Univ, Shandong Prov Key Lab Laser Polarizat & Informat, Dept Phys, Qufu 273165, Peoples R China
[2] Univ Palermo, Dipartimento Fis & Chim, I-90123 Palermo, Italy
[3] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
[4] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
关键词
ERROR-CORRECTING CODES; SUDDEN-DEATH; SPONTANEOUS EMISSION; DECOHERENCE; INFORMATION; DYNAMICS; SYSTEM; DISTILLATION; PURIFICATION; RECOVERY;
D O I
10.1038/srep13843
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Measurement backaction control of quantum dissipation in a nonlinear cavity-based Duffing oscillator
    Shi, Yueheng
    Greenfield, Sacha
    Pattanayak, Arjendu K.
    PHYSICAL REVIEW A, 2021, 103 (05)
  • [22] Cavity-based band pass filters
    Nechayev, Yu.B.
    Kretov, R.A.
    Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika), 2005, 64 (08): : 621 - 624
  • [23] A modular entanglement-based quantum computer architecture
    Riera-Sabat, Ferran
    Duer, Wolfgang
    NEW JOURNAL OF PHYSICS, 2024, 26 (12):
  • [24] Matter wave cavity-based gravimeter
    Impens, F.
    Bouyer, P.
    Landragin, A.
    Borde, Ch. J.
    JOURNAL DE PHYSIQUE IV, 2006, 135 : 311 - 312
  • [25] Biomimetic cavity-based metal complexes
    Rebilly, Jean-Noel
    Colasson, Benoit
    Bistri, Olivia
    Over, Diana
    Reinaud, Olivia
    CHEMICAL SOCIETY REVIEWS, 2015, 44 (02) : 467 - 489
  • [26] Coherence and entanglement in a nano-mechanical cavity
    Sun, Li-hui
    Li, Gao-xiang
    Ficek, Zbigniew
    ELEVENTH INTERNATIONAL CONFERENCE ON QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTATION (QCMC), 2014, 1633 : 243 - 245
  • [27] Entanglement and Coherence in Quantum State Merging
    Streltsov, A.
    Chitambar, E.
    Rana, S.
    Bera, M. N.
    Winter, A.
    Lewenstein, M.
    PHYSICAL REVIEW LETTERS, 2016, 116 (24)
  • [28] Quantum coherence and entanglement in the avian compass
    Pauls, James A.
    Zhang, Yiteng
    Berman, Gennady P.
    Kais, Sabre
    PHYSICAL REVIEW E, 2013, 87 (06):
  • [29] Entanglement and quantum coherence of two YIG spheres in a hybrid Laguerre-Gaussian cavity optomechanics
    Hidki, Abdelkader
    Peng, Jia-Xin
    Singh, S. K.
    Khalid, M.
    Asjad, M.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [30] Primary cavity-based lymphoma and HIV infection
    Ortega, MEV
    Santos, PM
    Aguado, FG
    Quintana, FB
    Cuesta, FL
    Vázquez, VS
    Lahoz, JG
    REVISTA CLINICA ESPANOLA, 1999, 199 (02): : 73 - 77