Cavity-based architecture to preserve quantum coherence and entanglement

被引:156
|
作者
Man, Zhong-Xiao [1 ]
Xia, Yun-Jie [1 ]
Lo Franco, Rosario [2 ,3 ,4 ]
机构
[1] Qufu Normal Univ, Shandong Prov Key Lab Laser Polarizat & Informat, Dept Phys, Qufu 273165, Peoples R China
[2] Univ Palermo, Dipartimento Fis & Chim, I-90123 Palermo, Italy
[3] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
[4] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
关键词
ERROR-CORRECTING CODES; SUDDEN-DEATH; SPONTANEOUS EMISSION; DECOHERENCE; INFORMATION; DYNAMICS; SYSTEM; DISTILLATION; PURIFICATION; RECOVERY;
D O I
10.1038/srep13843
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Cavity-based architecture to preserve quantum coherence and entanglement
    Zhong-Xiao Man
    Yun-Jie Xia
    Rosario Lo Franco
    Scientific Reports, 5
  • [2] Topological quantum walks in cavity-based quantum networks
    Ya Meng
    Feng Mei
    Gang Chen
    Suo-Tang Jia
    Quantum Information Processing, 2020, 19
  • [3] Quantum communication utilizing cavity-based quantum devices
    Nemoto, Kae
    Stephens, A.
    Devitt, S.
    Everitt, M.
    Schmiedmayer, J.
    Trupke, M.
    Saito, S.
    Matsuzaki, Y.
    SaiToh, A.
    Harrison, K.
    Munro, W. J.
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR), 2013,
  • [4] Topological quantum walks in cavity-based quantum networks
    Meng, Ya
    Mei, Feng
    Chen, Gang
    Jia, Suo-Tang
    QUANTUM INFORMATION PROCESSING, 2020, 19 (04)
  • [5] Addressable parallel cavity-based quantum memory
    Vetlugin, Anton N.
    Sokolov, Ivan V.
    EUROPEAN PHYSICAL JOURNAL D, 2014, 68 (09):
  • [6] Proposed Scheme for a Cavity-Based Quantum Battery
    Hadipour, Maryam
    Haseli, Soroush
    Wang, Dong
    Haddadi, Saeed
    ADVANCED QUANTUM TECHNOLOGIES, 2024, 7 (11)
  • [7] Addressable parallel cavity-based quantum memory
    Anton N. Vetlugin
    Ivan V. Sokolov
    The European Physical Journal D, 2014, 68
  • [8] Controlling quantum coherence and entanglement in cavity magnomechanical systems
    Qiu, Wenyue
    Cheng, Xiaohan
    Chen, Aixi
    Lan, Yueheng
    Nie, Wenjie
    PHYSICAL REVIEW A, 2022, 105 (06)
  • [9] Rate-fidelity tradeoff in cavity-based remote entanglement generation
    Tanji, Kazufumi
    Takahashi, Hiroki
    Roga, Wojciech
    Takeoka, Masahiro
    PHYSICAL REVIEW A, 2024, 110 (04)
  • [10] Quantum channels that preserve entanglement
    William Arveson
    Mathematische Annalen, 2009, 343 : 757 - 771