Influence of iron on sulfide inhibition in dark biohydrogen fermentation

被引:42
|
作者
Dhar, Bipro Ranjan [1 ]
Elbeshbishy, Elsayed [2 ]
Nakhla, George [3 ]
机构
[1] Univ Waterloo, Waterloo, ON N2L 3G1, Canada
[2] Trojan Technol, London, ON N5V 4T7, Canada
[3] Univ Western Ontario, London, ON N6A 5B9, Canada
关键词
Biohydrogen; Dark fermentation; Ferrous iron; Sulfide inhibition; HYDROGEN-PRODUCTION; ANAEROBIC-DIGESTION; SULFATE REDUCERS; METHANOGENS; BACTERIA; CULTURE; PH;
D O I
10.1016/j.biortech.2012.09.043
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Sulfide impact on biohydrogen production using dark fermentation of glucose at 37 degrees C was investigated. Dissolved sulfide (S2-) at a low concentration (25 mg/L) increased biohydrogen production by 54% relative to the control (without iron addition). Whereas on initial dissolved S2- concentration of 500 mg/L significantly inhibited the biohydrogen production with total cumulative biohydrogen decreasing by 90% compared to the control (without iron addition). At sulfide concentrations of 500 mg S2-/L, addition of Fe2+ at 3-4 times the theoretical requirement to precipitate 100% of the dissolved S2- entirely eliminated the inhibitory effect of sulfide. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:123 / 130
页数:8
相关论文
共 50 条
  • [31] Biohydrogen production by dark fermentation of glycerol using Enterobacter and Citrobacter Sp
    Maru, Biniam T.
    Constanti, Magda
    Stchigel, Alberto M.
    Medina, Francesc
    Sueiras, Jesus E.
    BIOTECHNOLOGY PROGRESS, 2013, 29 (01) : 31 - 38
  • [32] A Review on Biohydrogen Production Through Dark Fermentation, Process Parameters and Simulation
    Mokhtarani, Babak
    Zanganeh, Jafar
    Moghtaderi, Behdad
    ENERGIES, 2025, 18 (05)
  • [33] Nanoengineered cellulosic biohydrogen production via dark fermentation: A novel approach
    Srivastava, Neha
    Srivastava, Manish
    Malhotra, Bansi D.
    Gupta, Vijai K.
    Ramteke, P. W.
    Silva, Roberto N.
    Shukla, Pratyoosh
    Dubey, Kashyap Kumar
    Mishra, P. K.
    BIOTECHNOLOGY ADVANCES, 2019, 37 (06)
  • [34] Combined heterogeneous catalysis and dark fermentation systems for the conversion of cellulose into biohydrogen
    Gueell, E. J.
    Maru, B. T.
    Chimentao, R. J.
    Gispert-Guirado, F.
    Constanti, M.
    Medina, F.
    BIOCHEMICAL ENGINEERING JOURNAL, 2015, 101 : 209 - 219
  • [35] Recent insights into biohydrogen production by microalgae - From biophotolysis to dark fermentation
    Nagarajan, Dillirani
    Lee, Duu-Jong
    Kondo, Akihiko
    Chang, Jo-Shu
    BIORESOURCE TECHNOLOGY, 2017, 227 : 373 - 387
  • [36] Biohydrogen production from carob waste of the Lebanese industry by dark fermentation
    Bahry, Hajar
    Abdallah, Rawa
    Chezeau, Benoit
    Pons, Agnes
    Taha, Samir
    Vial, Christophe
    BIOFUELS-UK, 2022, 13 (02): : 219 - 229
  • [37] Biohydrogen Production from Biomass and Wastes via Dark Fermentation: A Review
    I. Ntaikou
    G. Antonopoulou
    G. Lyberatos
    Waste and Biomass Valorization, 2010, 1 : 21 - 39
  • [38] Hydroxyapatite Fabrication for Enhancing Biohydrogen Production from Glucose Dark Fermentation
    Mo, Haoe
    Wang, Na
    Ma, Zhongmin
    Zhang, Jishi
    Zhang, Jinlong
    Wang, Lu
    Dong, Weifang
    Zang, Lihua
    ACS OMEGA, 2022, 7 (12): : 10550 - 10558
  • [39] Biohydrogen production in an outdoor panel photobioreactor on dark fermentation effluent of molasses
    Avcioglu, Sevler Gokce
    Ozgur, Ebru
    Eroglu, Inci
    Yucel, Meral
    Gunduz, Ufuk
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (17) : 11360 - 11368
  • [40] Biohydrogen Production from Sewage Sludge by Sequential Dark and Photo Fermentation
    Zhao, Yuxiao
    Liang, Xiaohui
    Mu, Hui
    Zhang, Xiaodong
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2015, 9 (01) : 95 - 100