Enhanced Oxygen Evolution Reaction Activity by Encapsulating NiFe Alloy Nanoparticles in Nitrogen-Doped Carbon Nanofibers

被引:95
|
作者
Wei, Peng [1 ,2 ]
Sun, Xueping [2 ]
Liang, Qirui [3 ]
Li, Xiaogang [1 ]
He, Zhimin [2 ]
Hu, Xiangsheng [1 ]
Zhang, Jinxu [2 ]
Wang, Minhui [2 ]
Li, Qing [2 ]
Yang, Hui [1 ]
Han, Jiantao [2 ]
Huang, Yunhui [2 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Mech, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China
[3] Fudan Univ, Dept Chem, Lab Adv Mat, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
oxygen evolution reaction; NiFe alloy; electrospinning; water splitting; HIGHLY EFFICIENT; BIFUNCTIONAL ELECTROCATALYST; ENERGY-CONVERSION; METAL; ALKALINE; REDUCTION; ARRAYS; SITES; NANOARRAYS; NANOSHEETS;
D O I
10.1021/acsami.0c08271
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The rational design and exploration of the oxygen evolution reaction (OER) electrocatalysts with high efficiency, low cost, and long-term durability are extremely important for overall water splitting. Recently, numerous studies have shown that the OER reaction kinetics can be modified by optimizing components, introducing carbon matrix, and regulating porous nanostructures. Herein, a flexible and controllable electrospinning strategy is proposed to construct porous nitrogen (N)-doped carbon (C) nanofibers (NFs) with nickel-iron (NiFe) alloy nanoparticles encapsulated inside (NiFe@NCNFs) as an OER electrocatalyst. Benefiting from the strong synergistic effects that stem from the one-dimensional mesoporous structures with optimized binary metal components encapsulated in the N-doped carbon nanofibers, the NiFe@NCNFs exhibits enhanced OER performance with a low overpotential (294 mV at 10 mA cm(-2)) and excellent durability (over 10 h at 10 mA cm(-2)) in alkaline solution. Both experimental characterizations and density functional theory (DFT) calculations validate that a suitable binary metal ratio can lead to the optimal catalytic activity. Moreover, a two-electrode electrolyzer is assembled by using NiFe@NCNFs anode and Pt/C cathode in 1.0 M KOH media for the overall water splitting, which delivers an initial cell voltage of only 1.531 V at 10 mA cm(-2), as well as long-term stability up to 20 h. This study sheds light on the design and large-scale production of low-cost and high-performance electrocatalysts toward different energy applications in the future.
引用
收藏
页码:31503 / 31513
页数:11
相关论文
共 50 条
  • [21] Enhanced oxygen reduction reaction performance of nitrogen-doped carbon nanocages
    Shenggao Wang
    Xujie Wang
    Quanrong Deng
    Yangwu Mao
    Geming Wang
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 6608 - 6616
  • [22] Nickel Nanoparticles Encapsulated in Nitrogen-Doped Carbon Nanofibers as Excellent Bifunctional Catalyst for Hydrogen and Oxygen Evolution Processes
    Aleksandrzak, Malgorzata
    Dymerska, Anna
    Maslana, Klaudia
    Kukulka, Wojciech
    Suchenia, Sara
    Chen, Xuecheng
    Mijowska, Ewa
    CHEMCATCHEM, 2022, 14 (11)
  • [23] Enhanced oxygen reduction reaction performance of nitrogen-doped carbon nanocages
    Wang, Shenggao
    Wang, Xujie
    Deng, Quanrong
    Mao, Yangwu
    Wang, Geming
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (07) : 6608 - 6616
  • [24] PtZn nanoparticles supported on porous nitrogen-doped carbon nanofibers as highly stable electrocatalysts for oxygen reduction reaction
    Zhao, Lei
    Jiang, Jinxia
    Xiao, Shuhao
    Li, Zhao
    Wang, Junjie
    Wei, Xinxin
    Kong, Qingquan
    Chen, Jun Song
    Wu, Rui
    NANO MATERIALS SCIENCE, 2023, 5 (03) : 329 - 334
  • [25] PtZn nanoparticles supported on porous nitrogen-doped carbon nanofibers as highly stable electrocatalysts for oxygen reduction reaction
    Lei Zhao
    Jinxia Jiang
    Shuhao Xiao
    Zhao Li
    Junjie Wang
    Xinxin Wei
    Qingquan Kong
    Jun Song Chen
    Rui Wu
    Nano Materials Science, 2023, 5 (03) : 329 - 334
  • [26] Oxygen Evolution Reaction on Nitrogen-Doped Defective Carbon Nanotubes and Graphene
    Murdachaew, Garold
    Laasonen, Kari
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (45): : 25882 - 25892
  • [27] Oxygen Evolution Reaction Kinetic Barriers on Nitrogen-Doped Carbon Nanotubes
    Partanen, Lauri
    Murdachaew, Garold
    Laasonen, Kari
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (24): : 12892 - 12899
  • [28] Nitrogen-doped carbon layer encapsulating NiFeP nanosheet arrays as high-performance electrocatalyst for oxygen evolution reaction
    Wang, Shuai
    Shi, Weiye
    Zhou, Qin
    Zhang, Yan
    Huo, Chunqing
    Deng, Shengjue
    Lin, Shiwei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 984
  • [29] Nitrogen-doped carbon confined NiFe-NiFeP nanocubes immobilized on carbon nanotube as an efficient electrocatalyst for oxygen evolution reaction
    Wang, Qian
    Xu, Guan-Cheng
    Liu, De -Jiang
    Ding, Hui
    Zhang, Li
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (34) : 12712 - 12722
  • [30] Cobalt Nanoparticles Embedded in Nitrogen-Doped Carbon for the Hydrogen Evolution Reaction
    Fei, Huilong
    Yang, Yang
    Peng, Zhiwei
    Ruan, Gedeng
    Zhong, Qifeng
    Li, Lei
    Samuel, Errol L. G.
    Tour, James M.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (15) : 8083 - 8087