Photometric Redshift Estimates using Bayesian Neural Networks in the CSST Survey

被引:13
|
作者
Zhou, Xingchen [1 ,2 ]
Gong, Yan [1 ,3 ]
Meng, Xian-Min [1 ]
Chen, Xuelei [2 ,4 ,5 ]
Chen, Zhu [6 ]
Du, Wei [6 ]
Fu, Liping [6 ]
Luo, Zhijian [6 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Sci Ctr China Space Stn Telescope, Natl Astron Observ, Beijing 100101, Peoples R China
[4] Chinese Acad Sci, Key Lab Computat Astrophys, Natl Astron Observ, Beijing 100101, Peoples R China
[5] Peking Univ, Ctr High Energy Phys, Beijing 100871, Peoples R China
[6] Shanghai Normal Univ, Shanghai Key Lab Astrophys, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
(cosmology:) large-scale structure of universe; methods: statistical; techniques: image processing; TELESCOPE ADVANCED CAMERA; DIGITAL SKY SURVEY; DARK ENERGY SURVEY; SPACE-TELESCOPE; COSMOS;
D O I
10.1088/1674-4527/ac9578
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Galaxy photometric redshift (photoz) is crucial in cosmological studies, such as weak gravitational lensing and galaxy angular clustering measurements. In this work, we try to extract photoz information and construct its probability distribution function (PDF) using the Bayesian neural networks from both galaxy flux and image data expected to be obtained by the China Space Station Telescope (CSST). The mock galaxy images are generated from the Hubble Space Telescope - Advanced Camera for Surveys (HST-ACS) and COSMOS catalogs, in which the CSST instrumental effects are carefully considered. In addition, the galaxy flux data are measured from galaxy images using aperture photometry. We construct a Bayesian multilayer perceptron (B-MLP) and Bayesian convolutional neural network (B-CNN) to predict photoz along with the PDFs from fluxes and images, respectively. We combine the B-MLP and B-CNN together, and construct a hybrid network and employ the transfer learning techniques to investigate the improvement of including both flux and image data. For galaxy samples with signal-to-noise ratio (SNR) > 10 in g or i band, we find the accuracy and outlier fraction of photoz can achieve sigma (NMAD) = 0.022 and eta = 2.35% for the B-MLP using flux data only, and sigma (NMAD) = 0.022 and eta = 1.32% for the B-CNN using image data only. The Bayesian hybrid network can achieve sigma (NMAD) = 0.021 and eta = 1.23%, and utilizing transfer learning technique can improve results to sigma (NMAD) = 0.019 and eta = 1.17%, which can provide the most confident predictions with the lowest average uncertainty.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Hierarchical Bayesian inference of galaxy redshift distributions from photometric surveys
    Leistedt, Boris
    Mortlock, Daniel J.
    Peiris, Hiranya V.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 460 (04) : 4258 - 4267
  • [42] A Bayesian classifier for photometric redshifts: identification of high-redshift clusters
    Kodama, T
    Bell, EF
    Bower, RG
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1999, 302 (01) : 152 - 166
  • [43] Hierarchical Inference of the Lensing Convergence from Photometric Catalogs with Bayesian Graph Neural Networks
    Park, Ji Won
    Birrer, Simon
    Ueland, Madison
    Cranmer, Miles
    Agnello, Adriano
    Wagner-Carena, Sebastian J.
    Marshall, Philip J.
    Roodman, Aaron
    ASTROPHYSICAL JOURNAL, 2023, 953 (02):
  • [44] Spectroscopic redshift determination with Bayesian convolutional networks
    Podsztavek, O.
    Skoda, P.
    Tvrdik, P.
    ASTRONOMY AND COMPUTING, 2022, 40
  • [45] The PAU survey: photometric redshift estimation in deep wide fields
    Navarro-Girones, D.
    Gaztanaga, E.
    Crocce, M.
    Wittje, A.
    Hildebrandt, H.
    Wright, A. H.
    Siudek, M.
    Eriksen, M.
    Serrano, S.
    Renard, P.
    Gonzalez, E. J.
    Baugh, C. M.
    Cabayol, L.
    Carretero, J.
    Casas, R.
    Castander, F. J.
    Daza-Perilla, I., V
    De Vicente, J.
    Fernandez, E.
    Garcia-Bellido, J.
    Hoekstra, H.
    Manzoni, G.
    Miquel, R.
    Padilla, C.
    Sanchez, E.
    Sevilla-Noarbe, I
    Tallada-Crespi, P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 534 (02) : 1504 - 1527
  • [46] Continual Learning Using Bayesian Neural Networks
    Li, Honglin
    Barnaghi, Payam
    Enshaeifare, Shirin
    Ganz, Frieder
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (09) : 4243 - 4252
  • [47] Photometric redshift estimation using Gaussian processes
    Bonfield, D. G.
    Sun, Y.
    Davey, N.
    Jarvis, M. J.
    Abdalla, F. B.
    Banerji, M.
    Adams, R. G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 405 (02) : 987 - 994
  • [48] EXTENDED PHOTOMETRY FOR THE DEEP2 GALAXY REDSHIFT SURVEY: A TESTBED FOR PHOTOMETRIC REDSHIFT EXPERIMENTS
    Matthews, Daniel J.
    Newman, Jeffrey A.
    Coil, Alison L.
    Cooper, Michael C.
    Gwyn, Stephen D. J.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2013, 204 (02):
  • [49] QSO photometric redshifts using machine learning and neural networks
    Curran, S. J.
    Moss, J. P.
    Perrott, Y. C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 503 (02) : 2639 - 2650
  • [50] ANNz:: Estimating photometric redshifts using artificial neural networks
    Collister, AA
    Lahav, O
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2004, 116 (818) : 345 - 351