Photometric Redshift Estimates using Bayesian Neural Networks in the CSST Survey

被引:13
|
作者
Zhou, Xingchen [1 ,2 ]
Gong, Yan [1 ,3 ]
Meng, Xian-Min [1 ]
Chen, Xuelei [2 ,4 ,5 ]
Chen, Zhu [6 ]
Du, Wei [6 ]
Fu, Liping [6 ]
Luo, Zhijian [6 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Sci Ctr China Space Stn Telescope, Natl Astron Observ, Beijing 100101, Peoples R China
[4] Chinese Acad Sci, Key Lab Computat Astrophys, Natl Astron Observ, Beijing 100101, Peoples R China
[5] Peking Univ, Ctr High Energy Phys, Beijing 100871, Peoples R China
[6] Shanghai Normal Univ, Shanghai Key Lab Astrophys, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
(cosmology:) large-scale structure of universe; methods: statistical; techniques: image processing; TELESCOPE ADVANCED CAMERA; DIGITAL SKY SURVEY; DARK ENERGY SURVEY; SPACE-TELESCOPE; COSMOS;
D O I
10.1088/1674-4527/ac9578
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Galaxy photometric redshift (photoz) is crucial in cosmological studies, such as weak gravitational lensing and galaxy angular clustering measurements. In this work, we try to extract photoz information and construct its probability distribution function (PDF) using the Bayesian neural networks from both galaxy flux and image data expected to be obtained by the China Space Station Telescope (CSST). The mock galaxy images are generated from the Hubble Space Telescope - Advanced Camera for Surveys (HST-ACS) and COSMOS catalogs, in which the CSST instrumental effects are carefully considered. In addition, the galaxy flux data are measured from galaxy images using aperture photometry. We construct a Bayesian multilayer perceptron (B-MLP) and Bayesian convolutional neural network (B-CNN) to predict photoz along with the PDFs from fluxes and images, respectively. We combine the B-MLP and B-CNN together, and construct a hybrid network and employ the transfer learning techniques to investigate the improvement of including both flux and image data. For galaxy samples with signal-to-noise ratio (SNR) > 10 in g or i band, we find the accuracy and outlier fraction of photoz can achieve sigma (NMAD) = 0.022 and eta = 2.35% for the B-MLP using flux data only, and sigma (NMAD) = 0.022 and eta = 1.32% for the B-CNN using image data only. The Bayesian hybrid network can achieve sigma (NMAD) = 0.021 and eta = 1.23%, and utilizing transfer learning technique can improve results to sigma (NMAD) = 0.019 and eta = 1.17%, which can provide the most confident predictions with the lowest average uncertainty.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Photometric Redshift Estimates using Bayesian Neural Networks in the CSST Survey
    Xingchen Zhou
    Yan Gong
    Xian-Min Meng
    Xuelei Chen
    Zhu Chen
    Wei Du
    Liping Fu
    Zhijian Luo
    ResearchinAstronomyandAstrophysics, 2022, 22 (11) : 194 - 210
  • [2] Photometric redshift estimation for CSST survey with LSTM neural networks
    Luo, Zhijian
    Li, Yicheng
    Lu, Junhao
    Chen, Zhu
    Fu, Liping
    Zhang, Shaohua
    Xiao, Hubing
    Du, Wei
    Gong, Yan
    Shu, Chenggang
    Ma, Wenwen
    Meng, Xianmin
    Zhou, Xingchen
    Fan, Zuhui
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 535 (02) : 1844 - 1855
  • [3] Extracting photometric redshift from galaxy flux and image data using neural networks in the CSST survey
    Zhou, Xingchen
    Gong, Yan
    Meng, Xian-Min
    Cao, Ye
    Chen, Xuelei
    Chen, Zhu
    Du, Wei
    Fu, Liping
    Luo, Zhijian
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 512 (03) : 4593 - 4603
  • [4] Improving Photometric Redshift Estimation for Cosmology with LSST Using Bayesian Neural Networks
    Jones, Evan
    Do, Tuan
    Boscoe, Bernie
    Singal, Jack
    Wan, Yujie
    Nguyen, Zooey
    ASTROPHYSICAL JOURNAL, 2024, 964 (02):
  • [5] Estimating photometric redshift from mock flux for CSST survey by using weighted Random Forest
    Lu, Junhao
    Luo, Zhijian
    Chen, Zhu
    Fu, Liping
    Du, Wei
    Gong, Yan
    Li, Yicheng
    Meng, Xian-Min
    Tang, Zhirui
    Zhang, Shaohua
    Shu, Chenggang
    Zhou, Xingchen
    Fan, Zuhui
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (04) : 12140 - 12153
  • [6] Imputation of missing photometric data and photometric redshift estimation for CSST
    Luo, Zhijian
    Tang, Zhirui
    Chen, Zhu
    Fu, Liping
    Du, Wei
    Zhang, Shaohua
    Gong, Yan
    Shu, Chenggang
    Lu, Junhao
    Li, Yicheng
    Meng, Xian-Min
    Zhou, Xingchen
    Fan, Zuhui
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 531 (03) : 3539 - 3550
  • [7] An Algorithm for Redshift Estimation of Photometric Images Using Convolutional Neural Networks
    Wu Kuang
    Sun Chun
    Cao Guan-long
    Qiu Bo
    Yao Lin
    Zhang Ming-ru
    Zhang Li-wen
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43 (08) : 2529 - 2535
  • [8] Bayesian photometric redshift estimation
    Benítez, N
    ASTROPHYSICAL JOURNAL, 2000, 536 (02): : 571 - 583
  • [9] Probing the cosmological principle with the CSST photometric survey
    Xu, Yu-Tian
    Dai, Ji-Ping
    Zhao, Dong
    Xia, Jun-Qing
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 515 (04) : 5587 - 5593
  • [10] Artificial neural networks for quasar selection and photometric redshift determination
    Yeche, Ch
    Petitjean, P.
    Rich, J.
    Aubourg, E.
    Busca, N.
    Hamilton, J. -Ch
    Le Goff, J. -M.
    Paris, I.
    Peirani, S.
    Pichon, Ch
    Rollinde, E.
    Vargas-Magana, M.
    ASTRONOMY & ASTROPHYSICS, 2010, 523