Fuzzy c-means clustering based on Gaussian spatial information for brain MR image segmentation

被引:0
|
作者
Biniaz, Abbas [1 ]
Abbassi, Ataollah [1 ]
Shamsi, Mousa [2 ]
Ebrahimi, Afshin [2 ]
机构
[1] Sahand Univ Technol, Computat Neurosci Lab, Tabriz, Iran
[2] Sahand Univ Technol, Dept Elect Engn, Tabriz, Iran
来源
2012 19TH IRANIAN CONFERENCE OF BIOMEDICAL ENGINEERING (ICBME) | 2012年
关键词
component; Segmentation; MRI; FCM; spatial information;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Conventional fuzzy c-means (FCM) algorithm is highly vulnerable to noise due to not considering the spatial information in image segmentation. This paper aims to develop a Gaussian spatial FCM (gsFCM) for segmentation of brain magnetic resonance (MR) images. The proposed algorithm uses fuzzy spatial information to update fuzzy membership with a Gaussian function. Proposed method has less sensitivity to noise specifically in tissue boundaries, angles, and borders than spatial FCM (sFCM). Furthermore by the proposed algorithm a pixel which is a distinct tissue from anatomically point of view for example a tumor in preliminary stages of its appearance, has more chance to be a unique cluster. The quantitative assessment of presented FCM techniques is evaluated by conventional validity functions. Experimental results show the efficiency of proposed algorithm in segmentation of MR images.
引用
收藏
页码:132 / 136
页数:5
相关论文
共 50 条
  • [41] Kernel Possibilistic Fuzzy c-Means Clustering with Local Information for Image Segmentation
    Memon, Kashif Hussain
    Memon, Sufyan
    Qureshi, Muhammad Ali
    Alvi, Muhammad Bux
    Kumar, Dileep
    Shah, Rehan Ali
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2019, 21 (01) : 321 - 332
  • [42] Research on spaceflight image segmentation based on fuzzy c-means clustering
    Academy of Optoelectronics, Chinese Academy of Sciences, Beijing 100080, China
    不详
    Yuhang Xuebao, 2009, 4 (1667-1674):
  • [43] Medical Image Segmentation based on Improved Fuzzy C-means Clustering
    Liu, Dongling
    Ma, Ling
    Chen, Hui
    Meng, Ke
    2017 INTERNATIONAL CONFERENCE ON SMART GRID AND ELECTRICAL AUTOMATION (ICSGEA), 2017, : 406 - 410
  • [44] Image Segmentation Algorithm Based on Context Fuzzy C-Means Clustering
    Xu Jindong
    Zhao Tianyu
    Feng Guozheng
    Ou Shifeng
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (07) : 2079 - 2086
  • [45] Fuzzy C-Means Clustering With Local Information and Kernel Metric for Image Segmentation
    Gong, Maoguo
    Liang, Yan
    Shi, Jiao
    Ma, Wenping
    Ma, Jingjing
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (02) : 573 - 584
  • [46] MR brain image segmentation using an enhanced fuzzy C-means algorithm
    Szilágyi, L
    Benyó, Z
    Szilágyi, SM
    Adam, HS
    PROCEEDINGS OF THE 25TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4: A NEW BEGINNING FOR HUMAN HEALTH, 2003, 25 : 724 - 726
  • [47] Adaptive Kernel-Based Fuzzy C-Means Clustering with Spatial Constraints for Image Segmentation
    Hu, Guang
    Du, Zhenbin
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2019, 33 (01)
  • [48] Kernel Possibilistic Fuzzy c-Means Clustering with Local Information for Image Segmentation
    Kashif Hussain Memon
    Sufyan Memon
    Muhammad Ali Qureshi
    Muhammad Bux Alvi
    Dileep Kumar
    Rehan Ali Shah
    International Journal of Fuzzy Systems, 2019, 21 : 321 - 332
  • [49] Fuzzy C-Means Clustering with Spatially Weighted Information for Medical Image Segmentation
    Kang, Myeongsu
    Kim, Jong-Myon
    2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE FOR MULTIMEDIA, SIGNAL AND VISION PROCESSING (CIMSIVP), 2014, : 35 - 42
  • [50] Fast and accurate fuzzy C-means algorithm for MR brain image segmentation
    Hemanth, D. Jude
    Anitha, J.
    Balas, Valentina Emilia
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2016, 26 (03) : 188 - 195