UNSUPERVISED POLSAR IMAGE CLASSIFICATION USING BOUNDARY-PRESERVING REGION DIVISION AND REGION-BASED AFFINITY PROPAGATION CLUSTERING

被引:0
|
作者
Hou, Biao [1 ]
Jiang, Yuheng [1 ]
Ren, Bo [1 ]
Wen, Zaidao [1 ]
Wang, Shuang [1 ]
Jiao, Licheng [1 ]
机构
[1] Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Minist Educ China, Xian, Peoples R China
来源
2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2016年
基金
中国国家自然科学基金;
关键词
Polarimetric SAR; Image classification; Boundary preservation; Affinity propagation clustering; POLARIMETRIC SAR IMAGES; ADAPTIVE NUMBER; DECOMPOSITION; SEGMENTATION; FRAMEWORK; SPACE;
D O I
10.1109/IGARSS.2016.7730330
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a new method for polarimetric synthetic aperture radar (PolSAR) image classification. Firstly, to get a reasonable edge strength map, polarimetric information is used in edge strength calculation, and watershed algorithm is used to obtain the oversegmentation using the edge strength. Secondly, a searching table is used to determine the most suitable region to be merged. Finally, region-based affinity propagation clustering is employed to achieve an initial classification map, and the method provides an adjacent Wishart classifier with spatial relations to obtain the final classification result.
引用
收藏
页码:5103 / 5106
页数:4
相关论文
共 50 条
  • [41] Image segmentation using region division and local parameters based density clustering
    Lu, Hong
    Li, Hongsheng
    Qiang, Yong
    Fei, Shumin
    Journal of Computational Information Systems, 2015, 11 (14): : 4985 - 4994
  • [42] Image Classification Algorithm Based on Proposal Region Clustering Learning-Unsupervised Deep Learning
    Li, Lei
    Yin, Xiao-li
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2023, 18 (02) : 1337 - 1349
  • [43] Image Classification Algorithm Based on Proposal Region Clustering Learning-Unsupervised Deep Learning
    Lei Li
    Xiao-li Yin
    Journal of Electrical Engineering & Technology, 2023, 18 : 1337 - 1349
  • [44] HYPERSPECTRAL IMAGE CLASSIFICATION VIA REGION-BASED COMPOSITE KERNELS
    Liu, Jianjun
    Shi, Xiaoqian
    Wu, Zebin
    Xiao, Liang
    Xiao, Zhiyong
    Yuan, Yunhao
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 933 - 936
  • [45] Unsupervised region-based image segmentation using texture statistics and level-set methods
    Karouil, I.
    Fablet, R.
    Boucher, J. M.
    Augustin, J. M.
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING, CONFERENCE PROCEEDINGS BOOK, 2007, : 383 - +
  • [46] SAR SEA ICE IMAGE SEGMENTATION USING AN EDGE-PRESERVING REGION-BASED MRF
    Yang, Xuezhi
    Clausi, David A.
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 1721 - +
  • [47] UNSUPERVISED REGION-BASED ANOMALY DETECTION IN BRAIN MRI WITH ADVERSARIAL IMAGE INPAINTING
    Bao Nguyen
    Feldman, Adam
    Bethapudi, Sarath
    Jennings, Andrew
    Wlllcocks, Chris G.
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 1127 - 1131
  • [48] A region-based MRF model for unsupervised segmentation of moving objects in image sequences
    Tsaig, Y
    Averbuch, A
    2001 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2001, : 889 - 896
  • [49] Medical Image Compression Using Region-based Prediction
    Min, Qiusha
    Sadleir, Robert J. T.
    2012 IEEE EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2012,
  • [50] Integrated region-based image retrieval using region's spatial relationships
    Ko, B
    Byun, H
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL I, PROCEEDINGS, 2002, : 196 - 199