The Clifford-Fourier transform

被引:85
|
作者
Brackx, F [1 ]
De Schepper, N [1 ]
Sommen, F [1 ]
机构
[1] Univ Ghent, Dept Math Anal, Fac Engn, Clifford Res Grp, B-9000 Ghent, Belgium
关键词
multi-dimensional Fourier transform; Clifford analysis;
D O I
10.1007/s00041-005-4079-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A pair of Clifford Fourier transforms is defined in the framework of Clifford analysis. As operator exponentials with a Clifford algebra-valued kernel. It is a genuine Clifford analysis construct, which is shown to be a refinement of the classical multi-dimensional Fourier transform. An adequate operational calculus is developed.
引用
收藏
页码:669 / 681
页数:13
相关论文
共 50 条
  • [21] The Class of Clifford-Fourier Transforms
    De Bie, Hendrik
    De Schepper, Nele
    Sommen, Frank
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (06) : 1198 - 1231
  • [22] The Class of Clifford-Fourier Transforms
    Hendrik De Bie
    Nele De Schepper
    Frank Sommen
    Journal of Fourier Analysis and Applications, 2011, 17 : 1198 - 1231
  • [23] The Fractional Clifford-Fourier Kernel
    M. J. Craddock
    J. A. Hogan
    Journal of Fourier Analysis and Applications, 2013, 19 : 683 - 711
  • [24] The Fractional Clifford-Fourier Kernel
    Craddock, M. J.
    Hogan, J. A.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (04) : 683 - 711
  • [25] Pitt's Inequality and Logarithmic Uncertainty Principle for the Clifford-Fourier Transform
    Li, Shanshan
    Fei, Minggang
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2023, 33 (01)
  • [26] Pitt’s Inequality and Logarithmic Uncertainty Principle for the Clifford-Fourier Transform
    Shanshan Li
    Minggang Fei
    Advances in Applied Clifford Algebras, 2023, 33
  • [27] A new construction of the Clifford-Fourier kernel
    Constales, Denis
    De Bie, Hendrik
    Lian, Pan
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2017, 23 (02) : 462 - 483
  • [28] A new construction of the Clifford-Fourier kernel
    Denis Constales
    Hendrik De Bie
    Pan Lian
    Journal of Fourier Analysis and Applications, 2017, 23 : 462 - 483
  • [29] The bounds of the odd dimensional Clifford-Fourier kernels
    Lian, Pan
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (03) : 1213 - 1228
  • [30] History of Quaternion and Clifford-Fourier Transforms and Wavelets
    Brackx, Fred
    Hitzer, Eckhard
    Sangwine, Stephen J.
    QUATERNION AND CLIFFORD FOURIER TRANSFORMS AND WAVELETS, 2013, : XI - XXVII