The Clifford-Fourier transform

被引:85
|
作者
Brackx, F [1 ]
De Schepper, N [1 ]
Sommen, F [1 ]
机构
[1] Univ Ghent, Dept Math Anal, Fac Engn, Clifford Res Grp, B-9000 Ghent, Belgium
关键词
multi-dimensional Fourier transform; Clifford analysis;
D O I
10.1007/s00041-005-4079-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A pair of Clifford Fourier transforms is defined in the framework of Clifford analysis. As operator exponentials with a Clifford algebra-valued kernel. It is a genuine Clifford analysis construct, which is shown to be a refinement of the classical multi-dimensional Fourier transform. An adequate operational calculus is developed.
引用
收藏
页码:669 / 681
页数:13
相关论文
共 50 条
  • [1] On the Clifford-Fourier Transform
    De Bie, Hendrik
    Xu, Yuan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (22) : 5123 - 5163
  • [2] The Clifford-Fourier Transform
    Fred Brackx
    Nele De Schepper
    Frank Sommen
    Journal of Fourier Analysis and Applications, 2005, 11 : 669 - 681
  • [3] The Fractional Clifford-Fourier Transform
    De Bie, Hendrik
    De Schepper, Nele
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (05) : 1047 - 1067
  • [4] The Fractional Clifford-Fourier Transform
    Hendrik De Bie
    Nele De Schepper
    Complex Analysis and Operator Theory, 2012, 6 : 1047 - 1067
  • [5] Properties of the fractional Clifford-Fourier transform
    Shi, Haipan
    Yang, Heju
    Qiao, Yuying
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2023, 34 (12) : 931 - 946
  • [6] Clifford-Fourier transform on hyperbolic space
    Lian, Pan
    Bao, Gejun
    De Bie, Hendrik
    Constales, Denis
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (10) : 3666 - 3675
  • [7] Uncertainty Principles for the Clifford-Fourier Transform
    El Kamel, Jamel
    Jday, Rim
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (03) : 2429 - 2443
  • [8] Clifford-Fourier Transform for Color Image Processing
    Batard, Thomas
    Berthier, Michel
    Saint-Jean, Christophe
    GEOMETRIC ALGEBRA COMPUTING: IN ENGINEERING AND COMPUTER SCIENCE, 2010, : 135 - 162
  • [9] Beurling's theorem for the Clifford-Fourier transform
    Jday, Rim
    el Kamel, Jamel
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (08) : 9694 - 9707
  • [10] Fractional Clifford-Fourier Transform and its Application
    Shi, Haipan
    Yang, Heju
    Li, Zunfeng
    Qiao, Yuying
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2020, 30 (05)