Multi-Task Deep Learning Seismic Impedance Inversion Optimization Based on Homoscedastic Uncertainty

被引:9
|
作者
Zheng, Xiu [1 ]
Wu, Bangyu [1 ]
Zhu, Xiaosan [2 ]
Zhu, Xu [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[2] Chinese Acad Geol Sci, Inst Geol, Beijing 100037, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 03期
基金
中国国家自然科学基金;
关键词
seismic impedance inversion; fully convolutional residual network; multi-task learning; homoscedastic uncertainty;
D O I
10.3390/app12031200
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Seismic inversion is a process to obtain the spatial structure and physical properties of underground rock formations using surface acquired seismic data, constrained by known geological laws and drilling and logging data. The principle of seismic inversion based on deep learning is to learn the mapping between seismic data and rock properties by training a neural network using logging data as labels. However, due to high cost, the number of logging curves is often limited, leading to a trained model with poor generalization. Multi-task learning (MTL) provides an effective way to mitigate this problem. Learning multiple related tasks at the same time can improve the generalization ability of the model, thereby improving the performance of the main task on the same amount of labeled data. However, the performance of multi-task learning is highly dependent on the relative weights for the loss of each task, and manual tuning of the weights is often time-consuming and laborious. In this paper, a Fully Convolutional Residual Network (FCRN) is proposed to achieve seismic impedance inversion and seismic data reconstruction simultaneously, and a method based on the homoscedastic uncertainty of the Bayesian model is used to balance the weights of the loss function for the two tasks. The test results on the synthetic datasets of Marmousi2, Overthrust, and Volve field data show that the proposed method can automatically determine the optimal weight of the two tasks, and predicts impedance with higher accuracy than single-task FCRN model.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Multi-task Learning for Deep Semantic Hashing
    Ma, Lei
    Li, Hongliang
    Wu, Qingbo
    Shang, Chao
    Ngan, Kingngi
    2018 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (IEEE VCIP), 2018,
  • [32] Seismic Acoustic Impedance Inversion via Optimization-Inspired Semisupervised Deep Learning
    Chen, Hongling
    Gao, Jinghuai
    Zhang, Wei
    Yang, Ping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [33] A Survey of Multi-Task Deep Reinforcement Learning
    Vithayathil Varghese, Nelson
    Mahmoud, Qusay H.
    ELECTRONICS, 2020, 9 (09) : 1 - 21
  • [34] Multi-Task Deep Reinforcement Learning with PopArt
    Hessel, Matteo
    Soyer, Hubert
    Espeholt, Lasse
    Czarnecki, Wojciech
    Schmitt, Simon
    van Hasselt, Hado
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 3796 - 3803
  • [35] Multi-Task Learning as Multi-Objective Optimization
    Sener, Ozan
    Koltun, Vladlen
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [36] Cancer Classification with Multi-task Deep Learning
    Liao, Qing
    Jiang, Lin
    Wang, Xuan
    Zhang, Chunkai
    Ding, Ye
    2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2017, : 76 - 81
  • [37] Deep Learning for Multi-task Plant Phenotyping
    Pound, Michael P.
    Atkinson, Jonathan A.
    Wells, Darren M.
    Pridmore, Tony P.
    French, Andrew P.
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 2055 - 2063
  • [38] Multi-task Deep Learning for Image Understanding
    Yu, Bo
    Lane, Ian
    2014 6TH INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR), 2014, : 37 - 42
  • [39] Deep Asymmetric Multi-task Feature Learning
    Lee, Hae Beom
    Yang, Eunho
    Hwang, Sung Ju
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [40] Multi-fault diagnosis for gearboxes based on multi-task deep learning
    Zhao X.
    Wu J.
    Qian C.
    Zhang Y.
    Wang L.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2019, 38 (23): : 271 - 278