ADJUSTING A CONJECTURE OF ERDOS

被引:0
|
作者
Carnielli, Walter [1 ]
Carolino, Pietro K.
机构
[1] State Univ Campinas UNICAMP, Ctr Log Epistemol & Hist Sci, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Erdos conjecture; Littlewood-Offord reverse problem; counterexample;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate a conjecture of Paul Erdos, the last unsolved problem among those proposed in his landmark paper [2]. The conjecture states that there exists an absolute constant C > 0 such that, if, v are unit vectors in a Hilbert space, then at least C2(n)/n of all epsilon is an element of {-1, 1}(n) are such that vertical bar Sigma(n)(i=1) epsilon(i)v(i) vertical bar <= 1. We disprove the conjecture. For Hilbert spaces of dimension d > 2, the counterexample is quite strong, and implies that a substantial weakening of the conjecture is necessary. However, for d = 2, only a minor modification is necessary, and it seems to us that it remains a hard problem, worthy of Erdos. We prove some weaker related results that shed some light on the hardness of the problem.
引用
收藏
页码:154 / 159
页数:6
相关论文
共 50 条
  • [31] COUNTEREXAMPLE TO A CONJECTURE BY ERDOS,P
    RASSIAS, GM
    RASSIAS, JM
    RASSIAS, TM
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1977, 53 (04) : 119 - 121
  • [32] PROOF OF A CONJECTURE OF ERDOS AND TURAN
    SCHMUTZ, E
    JOURNAL OF NUMBER THEORY, 1989, 31 (03) : 260 - 271
  • [33] ON THE ERDOS-STRAUS CONJECTURE
    Ionascu, Eugen J.
    Wilson, Andrew
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 56 (01): : 21 - 30
  • [34] Beyond the Erdos Matching Conjecture
    Frankl, Peter
    Kupavskii, Andrey
    EUROPEAN JOURNAL OF COMBINATORICS, 2021, 95
  • [35] A proof of a sumset conjecture of Erdos
    Moreira, Joel
    Richter, Florian K.
    Robertson, Donald
    ANNALS OF MATHEMATICS, 2019, 189 (02) : 605 - 652
  • [36] On the Erdos-Turan conjecture
    Tang, Min
    JOURNAL OF NUMBER THEORY, 2015, 150 : 74 - 80
  • [37] On the Erdos-Turan conjecture
    Grekos, G
    Haddad, L
    Helou, C
    Pihko, J
    JOURNAL OF NUMBER THEORY, 2003, 102 (02) : 339 - 352
  • [38] A generalization of Erdos' matching conjecture
    Pelekis, Christos
    Rocha, Israel
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [39] The Cameron-Erdos conjecture
    Sapozhenko, AA
    DOKLADY MATHEMATICS, 2003, 68 (03) : 438 - 441
  • [40] On the Erdos-Sos conjecture
    Wozniak, M
    JOURNAL OF GRAPH THEORY, 1996, 21 (02) : 229 - 234