Optimizing Sensor Locations in a Multisensor Single-Object Tracking System

被引:3
|
作者
Cashbaugh, Jasmine [1 ,2 ]
Kitts, Christopher [3 ]
机构
[1] Univ Auckland, Dept Elect & Comp Engn, Auckland 1010, New Zealand
[2] Univ Auckland, Dept Phys, Auckland 1010, New Zealand
[3] Santa Clara Univ, Dept Mech Engn, Santa Clara, CA 94086 USA
关键词
LOCALIZATION;
D O I
10.1155/2015/741491
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Tracking a mobile object presents many challenges, especially when the tracked object is autonomous or semiautonomous and may move unpredictably. The use of autonomous mobile sensor systems allows for greater opportunity to track the mobile object but does not always yield an estimate of the tracked object's location that minimizes the estimation error. This paper presents a methodology to optimize the sensor system locations, given a single object and a fixed number of sensor systems, to achieve a position estimate that minimizes the estimation error. The tracking stations may then be controlled to achieve and maintain this optimal position, under position constraints. The theory predicts that given n sensor systems and one object there is a sensor system configuration that will yield a position estimate that minimizes the estimation error. A mathematical basis for this theory is presented and simulation and experimental results for two and three sensor system cases are shown to illustrate the effectiveness of the theory in the laboratory.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Performance of mobile, single-object, replication protocols
    Çetintemel, U
    Keleher, P
    19TH IEEE SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS - PROCEEDINGS, 2000, : 218 - 227
  • [22] Optimizing Data Collection for Object Tracking in Wireless Sensor Networks
    Placzek, Bartlomiej
    Bernas, Marcin
    COMPUTER NETWORKS, CN 2013, 2013, 370 : 485 - 494
  • [23] VisDrone-SOT2018: The Vision Meets Drone Single-Object Tracking Challenge Results
    Wen, Longyin
    Zhu, Pengfei
    Du, Dawei
    Bian, Xiao
    Ling, Haibin
    Hu, Qinghua
    Liu, Chenfeng
    Cheng, Hao
    Liu, Xiaoyu
    Ma, Wenya
    Nie, Qinqin
    Wu, Haotian
    Wang, Lianjie
    Perera, Asanka G.
    Zhang, Baochang
    Heo, Byeongho
    Liu, Chunlei
    Li, Dongdong
    Michail, Emmanouil
    Chen, Hanlin
    Liu, Hao
    Li, Haojie
    Kompatsiaris, Ioannis
    Cheng, Jian
    Fan, Jiaqing
    Zhang, Jie
    Choi, Jin Young
    Li, Jing
    Yang, Jinyu
    Choi, Jongwon
    Zhao, Juanping
    Han, Jungong
    Zhang, Kaihua
    Duan, Kaiwen
    Song, Ke
    Avgerinakis, Konstantinos
    Lee, Kyuewang
    Ding, Lu
    Lauer, Martin
    Giannakeris, Panagiotis
    Zhang, Peizhen
    Wang, Qiang
    Xu, Qianqian
    Huang, Qingming
    Liu, Qingshan
    Laganiere, Robert
    Zhang, Ruixin
    Yun, Sangdoo
    Zhu, Shengyin
    Wu, Sihang
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT V, 2019, 11133 : 469 - 495
  • [24] Siamese Multi-Scale Adaptive Search Network for Remote Sensing Single-Object Tracking
    Hou, Biao
    Cui, Yanyu
    Ren, Zhongle
    Li, Zhihao
    Wang, Shuang
    Jiao, Licheng
    REMOTE SENSING, 2023, 15 (17)
  • [25] BASIS: Bayfordbury single-object integral field spectrograph
    Richards, Samuel
    Martin, William
    Campbell, David
    Jones, Hugh
    Bland-Hawthorn, Joss
    Lawrence, Jon
    Brinks, Elias
    Bryant, Julia J.
    Fogarty, Lisa
    Gallaway, Mark
    Goodwin, Michael
    Leon-Saval, Sergio
    Sarzi, Marc
    Smith, Daniel J.
    GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY IV, 2012, 8446
  • [26] Reliability analysis of single-object group decision (SOGD)
    Shi, JP
    Reu, F
    Liu, CB
    Li, F
    PROCEEDINGS OF '96 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING, 1996, : 360 - 363
  • [27] A Multiple Attribute Decision Algorithm for Single-Object Benchmark
    Zhen, Cheng
    Liu, Sha
    Wang, Jun
    Li, Jianxun
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 3912 - 3917
  • [28] Robust Single-object Visual Tracking Framework via Fully Convolutional Siamese Network with Correlation Filter
    Dai, Jiashu
    Yan, Nan
    2020 13TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2020), 2020, : 359 - 363
  • [29] Fusion of Multiple Attention Mechanisms and Background Feature Adaptive Update Strategies in Siamese Networks for Single-Object Tracking
    Feng, Wenliang
    Meng, Fanbao
    Yu, Chuan
    You, Anqing
    APPLIED SCIENCES-BASEL, 2024, 14 (18):
  • [30] A fuzzy multisensor tracking system
    Chan, KCC
    Lee, V
    Leung, H
    SENSOR FUSION: ARCHITECTURES, ALGORITHMS, AND APPLICATIONS III, 1999, 3719 : 279 - +