Double Penalized Quantile Regression for the Linear Mixed Effects Model

被引:6
|
作者
Li, Hanfang [1 ,2 ]
Liu, Yuan [3 ]
Luo, Youxi [1 ]
机构
[1] Hubei Univ Technol, Sch Sci, Wuhan 430068, Peoples R China
[2] Cent China Normal Univ, Wuhan 430079, Peoples R China
[3] Emory Univ, Rollins Sch Publ Hlth, Atlanta, GA 30322 USA
关键词
Double penalized; fixed effects; quantile regression; random effects; variable selection; COVARIANCE STRUCTURE; VARIABLE SELECTION; INFORMATION;
D O I
10.1007/s11424-020-9065-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proposes a double penalized quantile regression for linear mixed effects model, which can select fixed and random effects simultaneously. Instead of using two tuning parameters, the proposed iterative algorithm enables only one optimal tuning parameter in each step and is more efficient. The authors establish asymptotic normality for the proposed estimators of quantile regression coefficients. Simulation studies show that the new method is robust to a variety of error distributions at different quantiles. It outperforms the traditional regression models under a wide array of simulated data models and is flexible enough to accommodate changes in fixed and random effects. For the high dimensional data scenarios, the new method still can correctly select important variables and exclude noise variables with high probability. A case study based on a hierarchical education data illustrates a practical utility of the proposed approach.
引用
收藏
页码:2080 / 2102
页数:23
相关论文
共 50 条
  • [31] ADMM for Penalized Quantile Regression in Big Data
    Yu, Liqun
    Lin, Nan
    INTERNATIONAL STATISTICAL REVIEW, 2017, 85 (03) : 494 - 518
  • [32] Hierarchically penalized quantile regression with multiple responses
    Kang, Jongkyeong
    Shin, Seung Jun
    Park, Jaeshin
    Bang, Sungwan
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2018, 47 (04) : 471 - 481
  • [33] Smoothness Selection for Penalized Quantile Regression Splines
    Reiss, Philip T.
    Huang, Lei
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2012, 8 (01):
  • [34] Asymptotics for penalized spline estimators in quantile regression
    Yoshida, Takuma
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (14) : 4815 - 4834
  • [35] Moving Beyond the Linear Regression Model: Advantages of the Quantile Regression Model
    Li, Mingxiang
    JOURNAL OF MANAGEMENT, 2015, 41 (01) : 71 - 98
  • [36] Quantile regression in functional linear semiparametric model
    Tang Qingguo
    Kong, Linglong
    STATISTICS, 2017, 51 (06) : 1342 - 1358
  • [37] Functional partially linear quantile regression model
    Ying Lu
    Jiang Du
    Zhimeng Sun
    Metrika, 2014, 77 : 317 - 332
  • [38] Functional partially linear quantile regression model
    Lu, Ying
    Du, Jiang
    Sun, Zhimeng
    METRIKA, 2014, 77 (02) : 317 - 332
  • [39] Testing for marginal linear effects in quantile regression
    Wang, Huixia Judy
    McKeague, Ian W.
    Qian, Min
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2018, 80 (02) : 433 - 452
  • [40] Penalized regression, mixed effects models and appropriate modelling
    Heckman, Nancy
    Lockhart, Richard
    Nielsen, Jason D.
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 1517 - 1552