Two definitions of the hopping time in a confined fluid of finite particles

被引:8
|
作者
Kalinay, Pavol [1 ]
Percus, Jerome K. [2 ,3 ]
机构
[1] Slovak Acad Sci, Inst Phys, Bratislava 84511, Slovakia
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[3] NYU, Dept Phys, New York, NY 10003 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2008年 / 129卷 / 15期
关键词
D O I
10.1063/1.2996363
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We consider a fluid of hard disks diffusing in a flat long narrow channel of width approaching from above the doubled diameter of the disks. In this limit, the disks can pass their neighbors only rarely, in a mean hopping time growing to infinity, so the disks start by diffusing anomalously. We study the hopping time, which is the crucial parameter of the theory describing the subsequent transition to normal diffusion. We show that two different definitions of this quantity, based either on the mean first passage time calculated from solution of the Fick-Jacobs equation, or coming from transition state theory, are incompatible. They have different physical interpretation and also, they give different dependencies of the hopping time on the width of the channel. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2996363]
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Particles confined in arbitrary potentials with a class of finite-range repulsive interactions
    Kumar, Avanish
    Kulkarni, Manas
    Kundu, Anupam
    PHYSICAL REVIEW E, 2020, 102 (03)
  • [32] Entropic stochastic resonance of finite-size particles in confined Brownian transport
    Hu, Hai-Wei
    Du, Lin
    Fan, Ai-Li
    Deng, Zi-Chen
    Grebogi, Celso
    PHYSICAL REVIEW E, 2024, 109 (05)
  • [33] Bose-Einstein condensation of a finite number of particles confined to harmonic traps
    Pathria, RK
    PHYSICAL REVIEW A, 1998, 58 (02): : 1490 - 1495
  • [34] Capillary hysteresis in a confined swirling two-fluid flow
    I. V. Naumov
    B. R. Sharifullin
    V. N. Shtern
    Journal of Engineering Thermophysics, 2017, 26 : 391 - 398
  • [35] Transition to chaos in a confined two-dimensional fluid flow
    Molenaar, D
    Clercx, HJH
    van Heijst, GJF
    PHYSICAL REVIEW LETTERS, 2005, 95 (10)
  • [36] Capillary Hysteresis in a Confined Swirling Two-Fluid Flow
    Naumov, I. V.
    Sharifullin, B. R.
    Shtern, V. N.
    JOURNAL OF ENGINEERING THERMOPHYSICS, 2017, 26 (03) : 391 - 398
  • [37] Two particle interactions in a confined viscoelastic fluid under shear
    Yoon, S.
    Walkley, M. A.
    Harlen, O. G.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2012, 185 : 39 - 48
  • [38] Dual vortex breakdown in a two-fluid confined flow
    Naumov, Igor V.
    Sharifullin, Bulat R.
    Tsoy, Mikhail A.
    Shtern, Vladimir N.
    PHYSICS OF FLUIDS, 2020, 32 (06)
  • [39] Hydrodynamic interactions of spherical particles in a fluid confined by a rough no-slip wall
    Rad, Somaye Hosseini
    Najafi, Ali
    PHYSICAL REVIEW E, 2010, 82 (03)
  • [40] Space-time discontinuous Galerkin finite element method for two-fluid flows
    Sollie, W. E. H.
    Bokhove, O.
    van der Vegt, J. J. W.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (03) : 789 - 817