Collisions and their catenations: Ultimately periodic tilings of the plane

被引:0
|
作者
Ollinger, Nicolas [1 ]
Richard, Gaetan [1 ]
机构
[1] Aix Marseille Univ, Lab Informat Fondamentale Marseille LIF, CNRS, F-13013 Marseille, France
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Motivated by the study of cellular automata algorithmic and dynamics, we investigate an extension of ultimately periodic words to two-dimensional infinite words: collisions. A natural composition operation oil tilings leads to a catenation operation on collisions. By existence of aperiodic tile sets, ultimately periodic tilings of tile plane cannot generate all possible tilings but exhibit some useful properties of their one-dimensional counterparts: ultimately periodic tilings are recursive, very regular, and tiling constraints are easy to preserve by catenation. We show that, for a given catenation scheme of finitely many collisions, the generated set of collisions is semi-linear.
引用
收藏
页码:229 / 240
页数:12
相关论文
共 50 条
  • [41] Compression Theorems for Periodic Tilings and Consequences
    Benjamin, Arthur T.
    Eustis, Alex K.
    Shattuck, Mark A.
    JOURNAL OF INTEGER SEQUENCES, 2009, 12 (06)
  • [42] 91 TYPES OF ISOGONAL TILINGS OF PLANE
    GRUNBAUM, B
    SHEPHARD, GC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (05): : A539 - A539
  • [43] Ultimately periodic Simple Temporal Problems (UPSTPs)
    Condotta, Jean-Francois
    Ligozat, Gerard
    Saade, Mahmoud
    Tripakis, Stavros
    TIME 2006: THIRTEENTH INTERNATIONAL SYMPOSIUM ON TEMPORAL REPRESENTATION AND REASONING, PROCEEDINGS, 2006, : 69 - +
  • [44] A primer of substitution tilings of the Euclidean plane
    Frank, Natalie Priebe
    EXPOSITIONES MATHEMATICAE, 2008, 26 (04) : 295 - 326
  • [45] NONRECURSIVE TILINGS OF PLANE .2.
    MYERS, D
    JOURNAL OF SYMBOLIC LOGIC, 1974, 39 (02) : 286 - 294
  • [46] Structurally Stable Symmetric Tilings on the Plane
    Makarova, Maria V.
    Kovalew, Ivan A.
    Serow, Dmitry W.
    NONLINEAR PHENOMENA IN COMPLEX SYSTEMS, 2021, 24 (02): : 156 - 165
  • [47] 81 TYPES OF TRANSITIVE TILINGS OF PLANE
    GRUNBAUM, B
    SHEPHARD, GC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (04): : A462 - A462
  • [48] Combinatorics of the discrete plane and tilings - Forward
    Vuillon, L
    THEORETICAL COMPUTER SCIENCE, 2004, 319 (1-3) : 1 - 1
  • [49] Circle packings from tilings of the plane
    Philip Rehwinkel
    Ian Whitehead
    David Yang
    Mengyuan Yang
    Journal of Geometry, 2024, 115
  • [50] 81 TYPES OF ISOHEDRAL TILINGS IN PLANE
    GRUNBAUM, B
    SHEPHARD, GC
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1977, 82 (SEP) : 177 - 196