Pyramid attention object detection network with multi-scale feature fusion

被引:5
|
作者
Chen, Xiu [1 ]
Li, Yujie [1 ,2 ]
Nakatoh, Yoshihisa [2 ]
机构
[1] Yangzhou Univ, Sch Informat Engn, Yangzhou, Peoples R China
[2] Kyushu Inst Technol, Sch Engn, Kitakyushu, Japan
关键词
Multi-scale features; Small objects; Object detection; Contextual information; Feature pyramid; Attention module;
D O I
10.1016/j.compeleceng.2022.108436
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of deep learning, object detection has made substantial progress. However, when the object to be detected in the image is small or partially occluded, the detection network often fails to detect it successfully. We propose a multi-scale feature fusion pyramid attention module, which effectively combines the global average pooling results of multiple scales with the upper features in the residual blocks of the feature extraction network to obtain more spatial context information in the original feature map. We added the multi-scale feature fusion pyramid attention module proposed in this paper based on YoloV3 and conducted experiments on the PASCALL VOC and MS COCO datasets. The experimental results show that the attention module can effectively help the network detect small objects and accurately detect partially occlusion objects.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Learning Discriminated Features Based on Feature Pyramid Networks and Attention for Multi-scale Object Detection
    Yunhua Lu
    Minghui Su
    Yong Wang
    Zhi Liu
    Tao Peng
    Cognitive Computation, 2023, 15 : 486 - 495
  • [22] FEATURE FUSING OF FEATURE PYRAMID NETWORK FOR MULTI-SCALE PEDESTRIAN DETECTION
    Tesema, Fiseha B.
    Lin, Junpeng
    Ou, Jie
    Wu, Hong
    Zhu, William
    2018 15TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2018, : 10 - 13
  • [23] Multi-Scale Feature Fusion Attention Network for Infrared Small Target Detection
    Zhang, Yidan
    Li, Chunlei
    Liu, Yundong
    Liu, Zhoufeng
    Yang, Ruimin
    FOURTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING, ICGIP 2022, 2022, 12705
  • [24] Multi-scale global context feature pyramid network for object detector
    Yunhao Li
    Mingwen Shao
    Bingbing Fan
    Wei Zhang
    Signal, Image and Video Processing, 2022, 16 : 705 - 713
  • [25] MFFAMM: A Small Object Detection with Multi-Scale Feature Fusion and Attention Mechanism Module
    Qu, Zhong
    Han, Tongqiang
    Yi, Turning
    APPLIED SCIENCES-BASEL, 2022, 12 (18):
  • [26] 3D Object Detection Based on Attention and Multi-Scale Feature Fusion
    Liu, Minghui
    Ma, Jinming
    Zheng, Qiuping
    Liu, Yuchen
    Shi, Gang
    SENSORS, 2022, 22 (10)
  • [27] Multi-scale Pyramid Pooling Network for salient object detection
    Dakhia, Abdelhafid
    Wang, Tiantian
    Lu, Huchuan
    NEUROCOMPUTING, 2019, 333 : 211 - 220
  • [28] Multi-scale global context feature pyramid network for object detector
    Li, Yunhao
    Shao, Mingwen
    Fan, Bingbing
    Zhang, Wei
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (03) : 705 - 713
  • [29] Multi-scale aggregation feature pyramid with cornerness for underwater object detection
    Li, Xinbin
    Yu, Haifeng
    Chen, Haiyang
    VISUAL COMPUTER, 2024, 40 (02): : 1299 - 1310
  • [30] Multi-scale aggregation feature pyramid with cornerness for underwater object detection
    Xinbin Li
    Haifeng Yu
    Haiyang Chen
    The Visual Computer, 2024, 40 (2) : 1299 - 1310