CogView: Mastering Text-to-Image Generation via Transformers

被引:0
|
作者
Ding, Ming [1 ]
Yang, Zhuoyi [1 ]
Hong, Wenyi [1 ]
Zheng, Wendi [1 ]
Zhou, Chang [2 ]
Yin, Da [1 ]
Lin, Junyang [2 ]
Zou, Xu [1 ]
Shao, Zhou [3 ]
Yang, Hongxia [2 ]
Tang, Jie [1 ,3 ]
机构
[1] Tsinghua Univ, Beijing, Peoples R China
[2] DAMO Acad, Alibaba Grp, Hangzhou, Peoples R China
[3] BAAI, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Text-to-Image generation in the general domain has long been an open problem, which requires both a powerful generative model and cross-modal understanding. We propose CogView, a 4-billion-parameter Transformer with VQ-VAE tokenizer to advance this problem. We also demonstrate the finetuning strategies for various downstream tasks, e.g. style learning, super-resolution, text-image ranking and fashion design, and methods to stabilize pretraining, e.g. eliminating NaN losses. CogView achieves the state-of-the-art FID on the blurred MS COCO dataset, outperforming previous GAN-based models and a recent similar work DALL-E. [GRAPHICS] .
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Zero-Shot Text-to-Image Generation
    Ramesh, Aditya
    Pavlov, Mikhail
    Goh, Gabriel
    Gray, Scott
    Voss, Chelsea
    Radford, Alec
    Chen, Mark
    Sutskever, Ilya
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [22] Dense Text-to-Image Generation with Attention Modulation
    Kim, Yunji
    Lee, Jiyoung
    Kim, Jin-Hwa
    Ha, Jung-Woo
    Zhu, Jun-Yan
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 7667 - 7677
  • [23] MirrorGAN: Learning Text-to-image Generation by Redescription
    Qiao, Tingting
    Zhang, Jing
    Xu, Duanqing
    Tao, Dacheng
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1505 - 1514
  • [24] StyleDrop: Text-to-Image Generation in Any Style
    Sohn, Kihyuk
    Ruiz, Nataniel
    Lee, Kimin
    Chin, Daniel Castro
    Blok, Irina
    Chang, Huiwen
    Barber, Jarred
    Jiang, Lu
    Entis, Glenn
    Li, Yuanzhen
    Hao, Yuan
    Essa, Irfan
    Rubinstein, Michael
    Krishnan, Dilip
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [25] A taxonomy of prompt modifiers for text-to-image generation
    Oppenlaender, Jonas
    BEHAVIOUR & INFORMATION TECHNOLOGY, 2024, 43 (15) : 3763 - 3776
  • [26] Text-to-Image Generation Method Based on Image-Text Semantic Consistency
    Xue Z.
    Xu Z.
    Lang C.
    Feng S.
    Wang T.
    Li Y.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2023, 60 (09): : 2180 - 2190
  • [27] Text-to-Image Synthesis via Aesthetic Layout
    Baraheem, Samah Saeed
    Trung-Nghia Le
    Nguyen, Tam, V
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 4485 - 4487
  • [28] Text-to-image via mask anchor points
    Baraheem, Samah S.
    Nguyen, Tam, V
    PATTERN RECOGNITION LETTERS, 2020, 133 : 25 - 32
  • [29] Generative adversarial text-to-image generation with style image constraint
    Zekang Wang
    Li Liu
    Huaxiang Zhang
    Dongmei Liu
    Yu Song
    Multimedia Systems, 2023, 29 : 3291 - 3303
  • [30] Generative adversarial text-to-image generation with style image constraint
    Wang, Zekang
    Liu, Li
    Zhang, Huaxiang
    Liu, Dongmei
    Song, Yu
    MULTIMEDIA SYSTEMS, 2023, 29 (06) : 3291 - 3303