Integrable matrix models in discrete space-time

被引:31
|
作者
Krajnik, Ziga [1 ]
Ilievski, Enej [1 ]
Prosen, Tomaz [1 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
来源
SCIPOST PHYSICS | 2020年 / 9卷 / 03期
基金
欧洲研究理事会;
关键词
YANG-BAXTER MAPS; PARTIAL DIFFERENCE-EQUATIONS; THERMODYNAMICS; LATTICE; HYDRODYNAMICS;
D O I
10.21468/SciPostPhys.9.3.038
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a class of integrable dynamical systems of interacting classical matrix-valued fields propagating on a discrete space-time lattice, realized as many-body circuits built from elementary symplectic two-body maps. The models provide an efficient integrable Trotterization of non-relativistic a-models with complex Grassmannian manifolds as target spaces, including, as special cases, the higher-rank analogues of the Landau-Lifshitz field theory on complex projective spaces. As an application, we study transport of Noether charges in canonical local equilibrium states. We find a clear signature of superdiffusive behavior in the Kardar-Parisi-Zhang universality class, irrespectively of the chosen underlying global unitary symmetry group and the quotient structure of the compact phase space, providing a strong indication of superuniversal physics.
引用
收藏
页数:56
相关论文
共 50 条