Integrable matrix models in discrete space-time

被引:31
|
作者
Krajnik, Ziga [1 ]
Ilievski, Enej [1 ]
Prosen, Tomaz [1 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
来源
SCIPOST PHYSICS | 2020年 / 9卷 / 03期
基金
欧洲研究理事会;
关键词
YANG-BAXTER MAPS; PARTIAL DIFFERENCE-EQUATIONS; THERMODYNAMICS; LATTICE; HYDRODYNAMICS;
D O I
10.21468/SciPostPhys.9.3.038
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a class of integrable dynamical systems of interacting classical matrix-valued fields propagating on a discrete space-time lattice, realized as many-body circuits built from elementary symplectic two-body maps. The models provide an efficient integrable Trotterization of non-relativistic a-models with complex Grassmannian manifolds as target spaces, including, as special cases, the higher-rank analogues of the Landau-Lifshitz field theory on complex projective spaces. As an application, we study transport of Noether charges in canonical local equilibrium states. We find a clear signature of superdiffusive behavior in the Kardar-Parisi-Zhang universality class, irrespectively of the chosen underlying global unitary symmetry group and the quotient structure of the compact phase space, providing a strong indication of superuniversal physics.
引用
收藏
页数:56
相关论文
共 50 条
  • [1] Integrable three dimensional models in wholly discrete space-time
    Sergeev, S
    INTEGRABLE STRUCTURES OF EXACTLY SOLVABLE TWO-DIMENSIONAL MODELS OF QUANTUM FIELD THEORY, 2001, 35 : 293 - 304
  • [2] ON DISCRETE MODELS OF SPACE-TIME
    HORZELA, A
    KAPUSCIK, E
    KEMPCZYNSKI, J
    UZES, C
    PROGRESS OF THEORETICAL PHYSICS, 1992, 88 (06): : 1065 - 1071
  • [3] Discrete space-time
    Krugly, AL
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (04) : 975 - 984
  • [4] Discrete Space-Time
    Alexey L. Krugly
    International Journal of Theoretical Physics, 2000, 39 : 975 - 984
  • [5] Quantum integrable models on 1+1 discrete space time
    Faddeev, L
    Volkov, A
    QUANTUM FIELDS AND QUANTUM SPACE TIME, 1997, 364 : 73 - 91
  • [6] Affine and Finite Lie Algebras and Integrable Toda Field Equations on Discrete Space-Time
    Garifullin, Rustem
    Habibullin, Ismagil
    Yangubaeva, Marina
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8
  • [7] Discrete random walk models for space-time fractional diffusion
    Gorenflo, R
    Mainardi, F
    Moretti, D
    Pagnini, G
    Paradisi, P
    CHEMICAL PHYSICS, 2002, 284 (1-2) : 521 - 541
  • [8] Inflaton Space-Time: A Discrete Quantum Space-Time Model Underlying the Standard Models of Particle Physics and Cosmology
    Dolan, Richard P.
    PHYSICS ESSAYS, 2006, 19 (03) : 370 - 405
  • [9] ON THEORY OF DISCRETE SPACE-TIME
    KADYSHEVSKII, VG
    DOKLADY AKADEMII NAUK SSSR, 1961, 3661 : 70 - &
  • [10] MODEL OF DISCRETE SPACE-TIME
    IVANENKO, DD
    SARDANASHVILI, GA
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1978, (11): : 144 - 145