Adaptive iterative learning control for robot manipulators: Experimental results

被引:71
|
作者
Tayebi, A. [1 ]
Islam, S.
机构
[1] Lakehead Univ, Dept Elect Engn, Thunder Bay, ON P7B 5E1, Canada
[2] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON K1S 5B6, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
iterative learning control; robot manipulators;
D O I
10.1016/j.conengprac.2005.04.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, two adaptive iterative learning control schemes, proposed by A. Tayebi [2004, Automatica, 40(7), 1195-1203], are tested experimentally on a five-degrees-of- freedom (5-DOF) robot manipulator CATALYST5. The control strategy consists of using a classical PD feedback structure plus an additional iteratively updated term designed to cope with the unknown parameters and disturbances. The control implementation is very simple in the sense that the knowledge of the robot parameters is not needed, and the only requirement on the PD and learning gains is the positive definiteness condition. Furthermore, in contrast with classical ILC schemes where the number of iterative variables is generally equal to the number of control inputs, the adaptive control schemes tested in this paper involve just one or two iterative variables. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:843 / 851
页数:9
相关论文
共 50 条
  • [21] Experimental Results on the Robust and Adaptive Control of Robot Manipulators Without Velocity Measurements
    Arteaga-Perez, Marco Antonio
    Pliego-Jimenez, Javier
    Romero, Jose Guadalupe
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2020, 28 (06) : 2770 - 2773
  • [22] Decentralized Adaptive Iterative Learning Control for Reconfigurable Manipulators
    Zhu Lu
    Dong Bo
    Zhao Bo
    Li Yuanchun
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 3990 - 3995
  • [23] Decentralized adaptive iterative learning control for reconfigurable manipulators
    Li, Yuan-Chun
    Zhu, Lu
    Dong, Bo
    Liu, Ke-Ping
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2012, 42 (02): : 469 - 475
  • [24] A Nested-Loop Iterative Learning Control for Robot Manipulators
    Lee, Yu-Hsiu
    Hsu, Sheng-Chieh
    Du, Yan-Yi
    Hu, Jwu-Sheng
    Tsao, Tsu-Chin
    IFAC PAPERSONLINE, 2019, 52 (15): : 358 - 363
  • [25] Robust Iterative Learning Control for Robot Manipulators with Input Deadzone
    Ji, Shuangjie
    Yan, Qiuzhen
    Chen, Qiang
    Lin, Mingjun
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 1944 - 1951
  • [26] Higher-order adaptive iterative control for uncertain robot manipulators
    Quan Quan
    Wang Xinhua
    Cai Kaiyuan
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 3, 2007, : 825 - +
  • [27] An Adaptive Sliding Mode-Like P-type Iterative Learning Control for Robot Manipulators
    Long, Yi
    Du, Zhijiang
    Wang, Weidong
    2014 14TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2014), 2014, : 169 - 173
  • [28] Payload-adaptive iterative learning control for robotic manipulators
    Yovchev, Kaloyan
    Miteva, Lyubomira
    MECHANICAL SCIENCES, 2022, 13 (01) : 427 - 436
  • [29] Adaptive Iterative Learning Control for Robot Manipulators With Time-Varying Parameters and Arbitrary Initial Errors
    Yan, Qiuzhen
    Cai, Jianping
    Zhang, Yuntao
    Yang, Zhi
    IEEE ACCESS, 2021, 9 : 166920 - 166931
  • [30] DECENTRALIZED ITERATIVE LEARNING COOPERATIVE IMPEDANCE CONTROL FOR A TEAM OF ROBOT MANIPULATORS
    Jin, Xu
    PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE, DSCC2020, VOL 1, 2020,