ON THE CAUCHY PROBLEM FOR A REACTION-DIFFUSION SYSTEM WITH SINGULAR NONLINEARITY

被引:1
|
作者
Zhou, Jun [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
关键词
Cauchy problems; singular nonlinearity; growth rate; quenching rate; PARTIAL-DIFFERENTIAL-EQUATIONS; GLOBAL EXISTENCE; BLOW-UP; DEGENERATE; TOUCHDOWN;
D O I
10.1016/S0252-9602(13)60061-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the growth rate and quenching rate of the following problem with singular nonlinearity ut = Delta u - upsilon(t) =Delta nu -u(-u,) (x,t) is an element of R-n x (0,infinity), u(x, 0) = u(o)(x), v(x, 0) = v(o) (x), x is an element of R-n for any n >= 1, where lambda,mu > 0 are constants. More precisely, for any u(o)(x), v(o)(x) satisfying A(11)(1+vertical bar x vertical bar(2))(alpha 11) <= u(o) <= A(12)(1+vertical bar x vertical bar(2))(alpha 12), A(21)(1+ vertical bar x vertical bar(2))(alpha 12) <= v(o) <= A(22)(1+ vertical bar x vertical bar(2))(alpha 22) for some constants alpha(12) >= alpha(11), alpha(22) >= alpha(21), A(12) >= A(11), A(22) >= A(21), the global solution (u, v) exists and satisfies Aii(1+1x12 +bit)an <U < Al2(1+1x12+b2t)a12, A21 (1 IX12 bit)n21 G. V G A(22) (1+ vertical bar x vertical bar(2) +b(2)t)(alpha 22) for some positive constants b(1), b(2) (see Theorem 3.3 for the parameters Ath cx,b,, j i=x1, 2). When (1- A)(1 - > 0, (1- A)(1 -)A) > 0 and 0 < uo Ai (biT +vertical bar x vertical bar(2)) 1 A1', 0 < VO < A(2) (b(2)T + I X12) in Rn for some constants At, b (i = 1,2) satisfying A(2)-A > 2nA1 A > 2nA2 and 0 < b(1) < (1)p,),4 (1 A)2nAi 0 < b(2) < (1- 2nA2 we prove that u(x, t) < A(i) (b(i) (T -t) lx12)1-, v(x, t) < A(2)(b(2)(T - t) vertical bar x vertical bar(2))1-1-1-, in Rn X (0, T). Hence, the solution (u, v) quenches at the origin x = 0 at the same time T (see Theorem 4.3). We also find various other conditions for the solution to quench in a finite time and obtain the corresponding decay rate of the solution near the quenching time.
引用
收藏
页码:1031 / 1048
页数:18
相关论文
共 50 条
  • [41] Quenching for a Reaction-Diffusion System with Coupled Inner Singular Absorption Terms
    Zhou, Shouming
    Mu, Chunlai
    BOUNDARY VALUE PROBLEMS, 2010,
  • [42] BEYOND QUENCHING FOR SINGULAR REACTION-DIFFUSION PROBLEMS
    CHAN, CY
    KE, L
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1994, 17 (01) : 1 - 9
  • [43] A novel analysis of the fractional Cauchy reaction-diffusion equations
    Sarwe, Deepak Umarao
    Raj, A. Stephan Antony
    Kumar, Pushpendra
    Salahshour, Soheil
    INDIAN JOURNAL OF PHYSICS, 2024, : 1825 - 1837
  • [44] The homotopy analysis method for Cauchy reaction-diffusion problems
    Bataineh, A. Sami
    Noorani, M. S. M.
    Hashim, I.
    PHYSICS LETTERS A, 2008, 372 (05) : 613 - 618
  • [45] STABILITY OF CONDUCTIVITIES IN AN INVERSE PROBLEM IN THE REACTION-DIFFUSION SYSTEM IN ELECTROCARDIOLOGY
    Ainseba, Bedr'Eddine
    Bendahmane, Mostafa
    He, Yuan
    NETWORKS AND HETEROGENEOUS MEDIA, 2015, 10 (02) : 369 - 385
  • [46] On a unilateral reaction-diffusion system and a nonlocal evolution obstacle problem
    Rodrigues, JF
    Da Silva, JL
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2004, 3 (01) : 85 - 95
  • [47] Optimal Control Problem for Cancer Invasion Reaction-Diffusion System
    Shangerganesh, Lingeshwaran
    Sowndarrajan, Puthur Thangaraj
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2018, 39 (14) : 1574 - 1593
  • [48] Optimal Control Problem for a Reaction-Diffusion System of Three Populations
    Wang, Xiaoni
    Guo, Gaihui
    Li, Jian
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2021, 11 (04) : 808 - 828
  • [49] A free boundary problem for a reaction-diffusion system with nonlinear memory
    Lin, Zhigui
    Ling, Zhi
    Pedersen, Michael
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (03): : 521 - 530
  • [50] A free boundary problem for a reaction-diffusion system with nonlinear memory
    Zhigui Lin
    Zhi Ling
    Michael Pedersen
    Zeitschrift für angewandte Mathematik und Physik, 2014, 65 : 521 - 530