Harmonic surfaces in the Cayley plane

被引:0
|
作者
Correia, N. [1 ]
Pacheco, R. [1 ]
Svensson, M. [2 ]
机构
[1] Univ Beira Interior, Ctr Matemat & Aplicacoes CMA UBI, P-6201001 Covilha, Portugal
[2] Univ Southern Denmark, Dept Math & Comp Sci, Campusvej 55, DK-5230 Odense M, Denmark
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2021年 / 103卷 / 02期
关键词
58E20; 53C43 (primary); SYMMETRICAL SPACES; MAPS; TORI; ORBITS;
D O I
10.1112/jlms.12376
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the twistor theory of nilconformal harmonic maps from a Riemann surface into the Cayley planeOP2=F4/Spin(9). By exhibiting this symmetric space as a submanifold of the Grassmannian of 10-dimensional subspaces of the fundamental representation ofF4, techniques and constructions similar to those used in earlier works on twistor constructions of nilconformal harmonic maps into classical Grassmannians can also be applied in this case. The originality of our approach lies on the use of the classification of nilpotent orbits in Lie algebras as described by Djokovic.
引用
收藏
页码:353 / 371
页数:19
相关论文
共 50 条
  • [11] Characterization of orthomaps on the Cayley plane
    Dolinar, G.
    Kuzma, B.
    Stopar, N.
    AEQUATIONES MATHEMATICAE, 2018, 92 (02) : 243 - 265
  • [12] ISOTROPIC IMMERSIONS OF THE CAYLEY PROJECTIVE PLANE AND CAYLEY FRENET CURVES
    Tanabe, Hiromasa
    KODAI MATHEMATICAL JOURNAL, 2011, 34 (02) : 301 - 316
  • [13] THE CAYLEY PLANE AS A TRANSLATION PLANE WITH A LARGE COLLINEATION GROUP
    HAHL, H
    MONATSHEFTE FUR MATHEMATIK, 1988, 106 (04): : 265 - 299
  • [14] Harmonic analysis on perturbed Cayley Trees
    Fidaleo, Francesco
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (03) : 604 - 634
  • [15] Proper Harmonic Maps from Hyperbolic Riemann Surfaces into the Euclidean Plane
    Alarcon, Antonio
    Galvez, Jose A.
    RESULTS IN MATHEMATICS, 2011, 60 (1-4) : 487 - 505
  • [16] Proper Harmonic Maps from Hyperbolic Riemann Surfaces into the Euclidean Plane
    Antonio Alarcón
    José A. Gálvez
    Results in Mathematics, 2011, 60 : 487 - 505
  • [17] ON THE DERIVED CATEGORY OF THE CAYLEY PLANE II
    Faenzi, Daniele
    Manivel, Laurent
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (03) : 1057 - 1074
  • [18] Zero cycles on a twisted Cayley plane
    Petrov, V.
    Sernenov, N.
    Zainoulline, K.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2008, 51 (01): : 114 - 124
  • [19] Einstein hypersurfaces of the Cayley projective plane
    Kim, Sinhwi
    Nikolayevsky, Yuri
    Park, JeongHyeong
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2020, 69
  • [20] GEOMETRY OF THE PROJECTIVE PLANE OF CAYLEY OCTAVES
    BRADA, C
    PECAUTTISON, F
    GEOMETRIAE DEDICATA, 1987, 23 (02) : 131 - 154