We consider the twistor theory of nilconformal harmonic maps from a Riemann surface into the Cayley planeOP2=F4/Spin(9). By exhibiting this symmetric space as a submanifold of the Grassmannian of 10-dimensional subspaces of the fundamental representation ofF4, techniques and constructions similar to those used in earlier works on twistor constructions of nilconformal harmonic maps into classical Grassmannians can also be applied in this case. The originality of our approach lies on the use of the classification of nilpotent orbits in Lie algebras as described by Djokovic.
机构:
Seoul Natl Univ, Ind & Math Data Analyt Res Ctr, Room 25-128,1 Gwanakro, Seoul 08826, South KoreaSeoul Natl Univ, Ind & Math Data Analyt Res Ctr, Room 25-128,1 Gwanakro, Seoul 08826, South Korea
Euh, Yunhee
Park, JeongHyeong
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Dept Math, 2066 Seobu Ro, Suwon 16419, South KoreaSeoul Natl Univ, Ind & Math Data Analyt Res Ctr, Room 25-128,1 Gwanakro, Seoul 08826, South Korea
Park, JeongHyeong
Sekigawa, Kouei
论文数: 0引用数: 0
h-index: 0
机构:
Niigata Univ, Dept Math, Niigata 9502181, JapanSeoul Natl Univ, Ind & Math Data Analyt Res Ctr, Room 25-128,1 Gwanakro, Seoul 08826, South Korea
机构:
UMR 5582 UJF CNRS, Inst Fourier, Math Lab, F-38402 St Martin Dheres, FranceUMR 5582 UJF CNRS, Inst Fourier, Math Lab, F-38402 St Martin Dheres, France