Interfacial Tensile Bond between Substrate Concrete and Repairing Mortar under Freeze-Thaw Cycles

被引:21
|
作者
Qian, Ye [1 ]
Zhang, Dawei [2 ]
Ueda, Tamon [3 ]
机构
[1] Columbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA
[2] Zhejiang Univ, Coll Civil Engn & Architecture, Hangzhou, Zhejiang, Peoples R China
[3] Hokkaido Univ, Div Engn & Policy Sustainable Environm, Sapporo, Hokkaido, Japan
关键词
CEMENT PASTE; PORTLAND-CEMENT; STRENGTH; MICROSTRUCTURE; DURABILITY; MECHANISMS; AGGREGATE; POLYMERS; ZONE; FILM;
D O I
10.3151/jact.14.421
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Freeze-thaw cycle is one of the major damage factors of concrete patch repair. Not only the material itself but also the adhesive interface is damaged under freeze-thaw cycles (FTC). Air-entraining agent has long been used to increase the freeze-thaw resistance of concrete materials. However, the effect of air-entraining agent on the adhesive interface has not been explored. The degradation mechanism and failure mode of concrete repair system under FTC has not been studied, either. In this study, three kinds of substrate concrete were casted and repaired by two kinds of ordinary Portland cement mortars and one kind of polymer-modified cement mortar (PCM), respectively. With up to 150 FTC, splitting tensile strength and failure modes of composite specimens were experimented. Results showed that air-entraining agent in the repairing mortar greatly influenced adhesive tensile strength under FTC. The water cement ratio and air-entraining agent of substrate concrete insignificantly affected the adhesive interface, but affects failure mode. The adhesive tensile strength of PCM-repaired composite specimens decreased faster than that of ordinary Portland cement mortar-repaired composite specimens although PCM itself showed stronger freeze-thaw resistance than ordinary mortar.
引用
收藏
页码:421 / 432
页数:12
相关论文
共 50 条
  • [21] Evolution and characterization of damage of concrete under freeze-thaw cycles
    Wang Ling
    Cao Yin
    Wang Zhendi
    Du Peng
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2013, 28 (04): : 710 - 714
  • [22] Study on tensile damage characteristics of sandstone under freeze-thaw cycles
    Hui Liu
    YeHui Yun
    Long Jin
    JiangHao Lin
    Yao Zhang
    Yong Luo
    JianXi Ren
    Sciences in Cold and Arid Regions, 2021, 13 (05) : 379 - 393
  • [23] Study on tensile damage characteristics of sandstone under freeze-thaw cycles
    Liu, Hui
    Yun, YeHui
    Jin, Long
    Lin, JiangHao
    Zhang, Yao
    Luo, Yong
    Ren, JianXi
    SCIENCES IN COLD AND ARID REGIONS, 2021, 13 (05): : 379 - 393
  • [24] Interfacial bond-slip degradation relationship between CFRP plate and steel plate under freeze-thaw cycles
    Pang, Yuyang
    Wu, Gang
    Wang, Haitao
    Liu, Ye
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 214 : 242 - 253
  • [25] Interfacial bond strength of SCFST composite columns after freeze-thaw cycles
    Wang, Weichen
    Chen, PingJun
    Huang, Mengdi
    Ma, Jiaxing
    Li, Junhua
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2024, 223
  • [26] Bond behavior between steel bar and recycled aggregate concrete after freeze-thaw cycles
    Shang, Huai-shuai
    Zhao, Tie-jun
    Cao, Wei-qun
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2015, 118 : 38 - 44
  • [27] Effects of Large Freeze-Thaw Cycles on Stiffness and Tensile Strength of Asphalt Concrete
    Islam, Md Rashadul
    Tarefder, Rafiqul A.
    JOURNAL OF COLD REGIONS ENGINEERING, 2016, 30 (01)
  • [28] Study on the bonding performance between basalt textile and concrete under freeze-thaw cycles
    Cai, Shixing
    Lin, Jianhong
    Fan, Kaifang
    Chen, Yuanyi
    Wang, Zeping
    ENGINEERING FAILURE ANALYSIS, 2023, 146
  • [29] Study on the bond properties between BFRP bars and hybrid fibers reinforced recycled concrete under freeze-thaw cycles
    Su, Yanming
    JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2024, 38 (19) : 3579 - 3600
  • [30] Experimental investigation on bond strength between BFRP bars and concrete under freeze-thaw cycles (Publication with Expression of Concern)
    Wu, Xiao-Yong
    Zhou, Kai
    Yuan, Xiao-Lu
    Zhu, Yong-Shuai
    Fan, Pei
    Xiong, Qi-Long
    INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING EDUCATION, 2021,