Spectral refinement for clustered eigenvalues of quasi-diagonal matrices

被引:2
|
作者
Ahues, M
d'Almeida, FD
Largillier, A
Vasconcelos, PB
机构
[1] Univ St Etienne, Equipe Anal Numer, EA 3058, F-42023 St Etienne 2, France
[2] Univ Porto, Ctr Matemat, P-4169007 Oporto, Portugal
[3] Univ Porto, Fac Engn, P-4200465 Oporto, Portugal
[4] Univ Porto, Fac Econ, P-4200465 Oporto, Portugal
关键词
clustered eigenvalues; eigenvectors; quasi-diagonal matrices; perturbed fixed slope; spectral refinement; perturbation theory;
D O I
10.1016/j.laa.2005.03.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend to a general situation the method for the numerical computation of eigenvalues and eigenvectors of a quasi-diagonal matrix, which is based on a perturbed fixed slope Newton iteration, and whose convergence was proved by the authors in a previous paper, under the hypothesis that the diagonal entries of the matrix are well separated. A generalization to the case of a cluster of diagonal entries is addressed now. Numerical experiments are performed both in the case of an academic example, and in the applied one of a polymer model. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:394 / 402
页数:9
相关论文
共 50 条
  • [41] VARIATIONS IN EIGENVALUES PRODUCED BY INTRODUCING DIAGONAL ELEMENTS INTO ALTERNATING MATRICES
    SAMUEL, I
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 266 (20): : 1060 - &
  • [42] A NEW ITERATION FOR COMPUTING THE EIGENVALUES OF SEMISEPARABLE (PLUS DIAGONAL) MATRICES
    Vandebril, Raf
    Van Barel, Marc
    Mastronardi, Nicola
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2008, 33 : 126 - 150
  • [43] The spectral properties of Vandermonde matrices with clustered nodes
    Batenkov, Dmitry
    Diederichs, Benedikt
    Goldman, Gil
    Yomdi, Yosef
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 609 : 37 - 72
  • [44] Refinement of the spectral bound of a sheaf of matrices
    Khalil, A
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1998, 32 (01): : 101 - 105
  • [45] THE EIGENVALUES OF HERMITE AND RATIONAL SPECTRAL DIFFERENTIATION MATRICES
    WEIDEMAN, JAC
    NUMERISCHE MATHEMATIK, 1992, 61 (03) : 409 - 432
  • [46] Calculation of clustered eigenvalues of large matrices using variance minimization method
    Besalú, E
    Bofill, JM
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 1998, 19 (15) : 1777 - 1785
  • [47] Asymptotics of the eigenvalues of seven-diagonal Toeplitz matrices of a special form
    Barrera, M.
    Grudsky, S.
    Stukopin, V.
    Voronin, I.
    ADVANCES IN OPERATOR THEORY, 2024, 9 (04)
  • [48] The largest eigenvalues of sample covariance matrices for a spiked population: Diagonal case
    Feral, Delphine
    Peche, Sandrine
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (07)
  • [49] Asymptotics of eigenvalues and eigenvectors of some infinite three-diagonal matrices
    Chernov, V. E.
    Suvorov, K. I.
    Knyazev, M. Yu
    Zetkina, A. I.
    INTERNATIONAL CONFERENCE APPLIED MATHEMATICS, COMPUTATIONAL SCIENCE AND MECHANICS: CURRENT PROBLEMS, 2018, 973
  • [50] DETERMINATION OF EIGENVALUES OF REAL SYMMETRIC PARA-P DIAGONAL MATRICES
    BHARGAVA, VTA
    MATHEWS, PM
    SEETHARAMAN, M
    PRAMANA, 1989, 32 (02) : 99 - 105