GENUS FIELDS OF CYCLIC l-EXTENSIONS OF RATIONAL FUNCTION FIELDS

被引:8
|
作者
Bautista-Ancona, Victor [1 ]
Rzedowski-Calderon, Martha [2 ]
Villa-Salvador, Gabriel [2 ]
机构
[1] Univ Autonoma Yucatan, Fac Matemat, Merida, Yucatan, Mexico
[2] Ctr Invest Estudios Avanzados IPN, Dept Control Automat, Mexico City 07000, DF, Mexico
关键词
Genus fields; congruence function fields; global fields; Dirichlet characters; cyclotomic function fields; cyclic extensions; Kummer extensions;
D O I
10.1142/S1793042113500243
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a construction of genus fields for Kummer cyclic l-extensions of rational congruence function fields, l a prime number. First we find this genus field for a field contained in a cyclotomic function field using Leopoldt's construction by means of Dirichlet characters and the Hilbert class field defined by Rosen. The general case follows from this. This generalizes the result obtained by Peng for a cyclic extension of degree l.
引用
收藏
页码:1249 / 1262
页数:14
相关论文
共 50 条
  • [41] Genus theory for function fields
    Bae, SH
    Koo, JK
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1996, 60 : 301 - 310
  • [42] L-extensions and L-boundary of conformal spacetimes
    A. Bautista
    A. Ibort
    J. Lafuente
    General Relativity and Gravitation, 2018, 50
  • [43] L-extensions and L-boundary of conformal spacetimes
    Bautista, A.
    Ibort, A.
    Lafuente, J.
    GENERAL RELATIVITY AND GRAVITATION, 2018, 50 (12)
  • [44] Structure of relative genus fields of cubic Kummer extensions
    Siham Aouissi
    Abdelmalek Azizi
    Moulay Chrif Ismaili
    Daniel C. Mayer
    Mohamed Talbi
    Boletín de la Sociedad Matemática Mexicana, 2023, 29
  • [45] Structure of relative genus fields of cubic Kummer extensions
    Aouissi, Siham
    Azizi, Abdelmalek
    Ismaili, Moulay Chrif
    Mayer, Daniel C.
    Talbi, Mohamed
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2023, 29 (03):
  • [46] Brauer groups of genus zero extensions of number fields
    Sonn, J
    Swallow, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (07) : 2723 - 2738
  • [47] FIELDS OF RATIONAL CONSTANTS OF CYCLIC FACTORIZABLE DERIVATIONS
    Zielinski, Janusz
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [48] Class fields, Dirichlet characters, and extended genus fields of global function fields
    Rzedowski-Calderon, Martha
    Villa-Salvador, Gabriel
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (08) : 3606 - 3618
  • [49] Some Artin-Schreier type function fields over finite fields with prescribed genus and number of rational places
    Cakcak, Emrah
    Ozbudak, Ferruh
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 210 (01) : 113 - 135
  • [50] Continuability of cyclic extensions of complete discrete valuation fields
    Boitsov V.G.
    Zhukov I.B.
    Journal of Mathematical Sciences, 2005, 130 (3) : 4643 - 4650