A novel semi-analytical solution to Jeffery-Hamel equation

被引:1
|
作者
Nourazar, Salman [1 ]
Dehghanpour, Hamid Reza [2 ]
Ramezani, Mohammad [1 ]
机构
[1] Amirkabir Univ Technol, Dept Mech Engn, Tehran, Iran
[2] Tafresh Univ, Phys Grp, Tafresh, Iran
来源
JOURNAL OF PHYSICS COMMUNICATIONS | 2020年 / 4卷 / 07期
关键词
Jeffery-Hamel equations; Fourier transform; Adomian decomposition method; Adomian polynomials; non-linear differential equations; ADOMIAN DECOMPOSITION METHOD; NONLINEAR SCHRODINGERS EQUATION; TRAVELING-WAVE SOLUTIONS; BOUNDARY-VALUE-PROBLEMS; (G'/G)-EXPANSION METHOD; APPROXIMATE SOLUTION; ANALYTIC SOLUTION; HOMOTOPY ANALYSIS; FLOW; ALGORITHM;
D O I
10.1088/2399-6528/aba034
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new approach based on the Adomian decomposition and the Fourier transform is introduced. The method suggests a solution for the well-known magneto-hydrodynamic (MHD) Jeffery-Hamel equation. Results of Adomian decomposition method combined with Fourier transform are compared with exact and numerical methods. The FTADM as an exclusive and new method satisfies all boundary and initial conditions over the entire spatial and temporal domains. Moreover, using the FTADM leads to rapid approach of approximate results toward the exact solutions is demonstrated. The second derivative of Jeffery-Hamel solution related to the similar number of items of recursive terms under a vast spatial domain shows the maximum error in the order of 10(-5) comparing to exact and numerical solutions. The results also imply that the FTADM can be considered as a precise approximation for solving the third-order nonlinear Jeffery-Hamel equations.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [31] On the expedient solution of the magneto-hydrodynamic Jeffery-Hamel flow of Casson fluid
    Nourazar, S. S.
    Nazari-Golshan, A.
    Soleymanpour, F.
    SCIENTIFIC REPORTS, 2018, 8
  • [32] Numerical-Analytical Investigation of Multimodal Solutions of the Jeffery-Hamel Problem for a Convergent Channel
    L. D. Akulenko
    D. V. Georgievskii
    S. A. Kumakshev
    Fluid Dynamics, 2005, 40 : 875 - 884
  • [33] Analytical Investigation of Jeffery-hamel Flow with High Magnetic Field and Nano Particle by RVIM
    Imani, A. A.
    Rostamian, Y.
    Ganji, D. D.
    Rokni, H. B.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2012, 25 (03): : 249 - 256
  • [34] Linear temporal stability of Jeffery-Hamel flow of nanofluids
    Rezaee, Danial
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2024, 107 : 1 - 16
  • [35] Numerical-Analytical Investigation of Multimodal Solutions of the Jeffery-Hamel Problem for a Convergent Channel
    Akulenko, L. D.
    Georgievskii, D. V.
    Kumakshev, S. A.
    FLUID DYNAMICS, 2005, 40 (06) : 875 - 884
  • [36] Numerical Study of Bipolar Coordinate Jeffery-Hamel Flow
    Matyas, Alpar
    Nagy, Botond
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [37] Numerical-analytical investigation of multimodal solutions of the Jeffery-Hamel problem for a convergent channel
    Akulenko, L.D.
    Georgievskii, D.V.
    Kumakshev, S.A.
    Izvestiya Akademii Nauk. Mekhanika Zhidkosti I Gaza, 2005, (06): : 49 - 60
  • [38] Control of optimal growth of instabilities in Jeffery-Hamel flow
    Kant, Ravi
    Vinod, Narayanan
    AIP ADVANCES, 2019, 9 (03)
  • [39] Double-diffusive convection in Jeffery-Hamel flow
    Noureen
    Marwat, Dil Nawaz Khan
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [40] SYMMETRICAL VELOCITY PROFILES FOR JEFFERY-HAMEL FLOW.
    Marshall, R.S.
    1600, (46):