Finite-frequency noise properties of the nonequilibrium Anderson impurity model

被引:16
|
作者
Orth, Christoph P. [1 ,2 ]
Urban, Daniel F. [3 ]
Komnik, Andreas [1 ]
机构
[1] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany
[2] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland
[3] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany
关键词
PERTURBATION EXPANSION; FLUCTUATIONS;
D O I
10.1103/PhysRevB.86.125324
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze the spectrum of the electric-current autocorrelation function (noise power) in the Anderson impurity model biased by a finite transport voltage. Special emphasis is placed on the interplay of nonequilibrium effects and electron-electron interactions. Analytic results are presented for a perturbation expansion in the interaction strength U. Compared to the noninteracting setup we find a suppression of noise for finite frequencies in equilibrium and an amplification in nonequilibrium. Furthermore, we use a diagrammatic resummation scheme to obtain nonperturbative results in the regime of intermediate U. At finite voltage, the noise spectrum shows sharp peaks at positions related to the Kondo temperature instead of the voltage.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Finite-Frequency Object Identification with Delays
    Alexandrov, A. G.
    Orlov, Yu F.
    Palenov, M. V.
    AUTOMATION AND REMOTE CONTROL, 2014, 75 (02) : 179 - 187
  • [42] Finite-Frequency Model Reduction of Takagi-Sugeno Fuzzy Systems
    Ding, Da-Wei
    Li, Xiao-Jian
    Du, Xin
    Xie, Xiangpeng
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2016, 24 (06) : 1464 - 1474
  • [43] Light emission and finite-frequency shot noise in molecular junctions: From tunneling to contact
    Lu, Jing-Tao
    Christensen, Rasmus Bjerregaard
    Brandbyge, Mads
    PHYSICAL REVIEW B, 2013, 88 (04):
  • [45] Finite-frequency object identification with delays
    A. G. Alexandrov
    Yu. F. Orlov
    M. V. Palenov
    Automation and Remote Control, 2014, 75 : 179 - 187
  • [46] Finite-Frequency Kernels for Pg Wavetrains
    Nelson, Peter L.
    Modrak, Ryan T.
    Phillips, W. Scott
    Begnaud, Michael
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2023, 113 (03) : 1039 - 1053
  • [47] Finite-frequency transport of composite fermions
    Evers, F
    Mirlin, AD
    Polyakov, DG
    Wölfle, P
    PHYSICA B, 2001, 298 (1-4): : 187 - 190
  • [48] Finite-Frequency Noise and Dynamical Charge Susceptibility in Single and Double Quantum Dot Systems
    Richard, Samuel
    Lavagna, Mireille
    Crepieux, Adeline
    ANNALEN DER PHYSIK, 2023, 536 (03)
  • [49] Finite-Frequency Sensitivity Kernels for Seismic Noise Interferometry Based on Differential Time Measurements
    Liu, Xin
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2020, 125 (04)
  • [50] Finite-Frequency Model Reduction of Two-Dimensional Digital Filters
    Ding, Da-Wei
    Du, Xin
    Li, Xiaoli
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (06) : 1624 - 1629