Reoptimization of Ordered Generalized Constraint Satisfaction Problems

被引:0
|
作者
Mikhailyuk, V. A. [1 ]
机构
[1] Natl Acad Sci Ukraine, VM Glushkov Cybernet Inst, Kiev, Ukraine
关键词
unique games conjecture; solving the Ins-OCSP problem; reoptimization; polynomial optimal (threshold) approximate algorithm; approximation ratio; INAPPROXIMABILITY; APPROXIMATION; HARDNESS;
D O I
10.1615/JAutomatInfScien.v44.i6.60
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
While the truth of the unique games conjecture (UGC), for solving the Ins-OCSP problem (OCSP reoptimization, when adding a single constraint), there exists a polynomial optimal (threshold) approximate algorithm. Its approximation ratio depends on the threshold "random" approximation ratio for solving the OCSP problem.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 50 条
  • [31] Constraint satisfaction problems: Algorithms and applications
    Brailsford, SC
    Potts, CN
    Smith, BM
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1999, 119 (03) : 557 - 581
  • [32] Optimal Refutations for Constraint Satisfaction Problems
    Hulubei, Tudor
    O'Sullivan, Barry
    19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05), 2005, : 163 - 168
  • [33] ROBUSTLY SOLVABLE CONSTRAINT SATISFACTION PROBLEMS
    Barto, Libor
    Kozik, Marcin
    SIAM JOURNAL ON COMPUTING, 2016, 45 (04) : 1646 - 1669
  • [34] Complexity of Conservative Constraint Satisfaction Problems
    Bulatov, Andrei A.
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2011, 12 (04)
  • [35] Argumentation frameworks as constraint satisfaction problems
    Leila Amgoud
    Caroline Devred
    Annals of Mathematics and Artificial Intelligence, 2013, 69 : 131 - 148
  • [36] Symmetry Definitions for Constraint Satisfaction Problems
    David Cohen
    Peter Jeavons
    Christopher Jefferson
    Karen E. Petrie
    Barbara M. Smith
    Constraints, 2006, 11 : 115 - 137
  • [37] Constraint Satisfaction Problems: Complexity and Algorithms
    Bulatov, Andrei A.
    LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS (LATA 2018), 2018, 10792 : 1 - 25
  • [38] The Complexity of Temporal Constraint Satisfaction Problems
    Bodirsky, Manuel
    Kara, Jan
    JOURNAL OF THE ACM, 2010, 57 (02)
  • [39] Simultaneous Approximation of Constraint Satisfaction Problems
    Bhangale, Amey
    Kopparty, Swastik
    Sachdeva, Sushant
    AUTOMATA, LANGUAGES, AND PROGRAMMING, PT I, 2015, 9134 : 193 - 205
  • [40] Linear programs for constraint satisfaction problems
    RWTH Aachen, Aachen, Germany
    Eur J Oper Res, 1 (105-123):